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Introduction

One of the most striking features of neutron-nucleus interactions is the resonance
structure observed in the reaction cross sections at low incident neutron energies.
Since the electrically neutral neutron has no Coulomb barrier to overcome, and
has a negligible interaction with the electrons in matter, it can directly penetrate
and interact with the atomic nucleus, even at very low kinetic energies in the
order of electron-volts.

The cross sections can show variations of several orders of magnitude on an
energy scale of only a few eV. The origin of the resonances is well understood:
they are related to the excitation of nuclear states in the compound nuclear sys-
tem formed by the neutron and the target nucleus, at excitation energies lying
above the neutron binding energy of typically several MeV. The average distance
between the resonances reflect the density of nuclear levels. Typical neutron-
induced total cross sections for several masses are shown in figure 1. From the
figure one can observe an decreasing level spacing with increasing mass. This
is a general trend observed in cross section data, with an exception near closed
shell nuclei where the level spacing becomes much larger, or equivalently the
level density much smaller, as shown in the figure for the nucleus 208Pb.

The compound nucleus model was introduced by Niels Bohr to explain the ob-
served resonances in neutron-nucleus reactions. The wavelength of low energy
neutrons is comparable to the size of the nucleus. Typical widths Γ of measured
resonances are in the order of electron-volts. According to Heisenberg’s uncer-
tainty principle, the corresponding life time of the compound nucleus is in the
order of τ = h̄/Γ ' 10−15 s, several orders of magnitude larger than the typ-
ical time needed by a neutron to cross a nucleus without interaction. In this
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Figure 1: The neutron total cross section of several nuclei showing large differences in
the resonance spacings.

picture, the neutron binding energy which becomes available to the compound
nucleus, is rearranged among all nucleons, and gives rise to a complex config-
uration corresponding to a well defined nuclear state with an energy, spin and
parity. Within Fermi’s description of excitations of particle-hole configurations,
such a state would correspond to an extremely complicated configuration of a
many particle, many hole state. The compound nucleus may then decay through
the energetically allowed channels. The way of decay and the decay probabil-
ity of the compound nucleus is considered to be independent from the way how
the compound nucleus was formed, but respecting conservation of energy and
angular momentum. The decay probability is equal to the branching ratio Γx/Γ

2 Introduction to neutron-induced reactions and the R-matrix formalism EJC2014



where Γx is the width related to the decay by emission of a particle x, which at
low energy is mainly a gamma ray or a neutron.

In direct reactions, as the opposite reaction mechanism to compound nucleus re-
actions, the incident neutron interacts directly with one or a few nucleons without
forming a compound nucleus. The time scale of direct reactions is in the order of
10−22 s and much shorter than compound-nucleus resonance reactions. Direct re-
actions become important for the heavier nuclei at neutron energies higher than
about 10 MeV where the De Broglie wavelength of the neutron becomes compa-
rable to the size of nucleons. But also at lower neutron energies, mainly for light
A or closed shell nuclei, direct reactions may contribute significantly to the total
reaction cross section. In general for neutrons with energies below 1 MeV the
here discussed compound nucleus reactions prevail.

In figure 2 a picture of the compound nucleus reaction is sketched. After the for-
mation of the highly excited state by an incident neutron, the compound nucleus
can decay by emission of gamma radiation, which is called radiative neutron
capture, or by by emission of a neutron, which is elastic scattering. If the kinetic
energy of the neutron is high enough, threshold reactions are possible, like in-
elastic scattering, leaving the target nucleus in an excited state. If the excitation
energy is higher than the fission threshold, fission is energetically allowed. Due
to the pairing effect, the neutron binding energy for even compound nuclei is
considerably lower than for odd compound nuclei, which for some of the heavy
nuclei results in a fissionable nucleus even if the incident neutron has nearly zero
kinetic energy. All these reactions show resonances at the same energies corre-
sponding to the excitation of the nuclear levels in the compound nucleus. The
shapes of the resonances are different and related to the involved widths.

The possible neutron-nucleus reactions vary with incident neutron energy. The
nuclear reaction that is always present if a reaction is energetically allowed is
elastic scattering. This may be scattering from the nuclear potential, also called
shape elastic or sometimes hard sphere scattering, without forming a compound
nucleus. In addition resonant elastic scattering through a compound nucleus
may be present. The potential scattering is a smooth and nearly energy inde-
pendent cross section as a function of energy but interferes with the resonant
scattering cross section.

The widths of isolated resonances in reaction cross sections have in good approxi-
mation a familiar Breit-Wigner shape. The time dependence of the wave function
Ψ(t) of a non-stationary state at E0 with a life time τ = h̄/Γ, is observed as an
exponential decay in time. The squared absolute value of the Fourier transform
of Ψ(t) gives the energy distribution P(E) having the Breit-Wigner form

P(E) =
Γ/2π

(E− E0)2 + Γ2/4
(1)
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which is the typical shape for any quantum-mechanical state with a finite life-
time. .

In the limiting case of a single, isolated ` = 0 resonance at low energy E0 and
with capture, fission and elastic scattering as the only open channels, the total
cross section can be expressed in the single level Breit-Wigner form as

σT(E) = 4πR′2 + πλ2g

(
4Γn(E− E0)R′/λ + Γ2

n + ΓnΓγ + ΓnΓ f

(E− E0)2 + (Γn + Γγ + Γ f+)2/4

)
(2)

where Γn is the neutron width, Γγ the radiative width, Γ f the fission width, g the
statistical spin factor and λ the reduced de Broglie wave length of the neutron.
The first term in the sum is the potential scattering cross section σp = 4πR′2,
where R′ is the effective nuclear radius, with a value close to the channel radius
a. the Full R-matrix expressions for the cross sections are given later.

Sn =10 MeV
D =100 keV

D =10 eV
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E
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E
n

Figure 2: Schematic view of the formation and decay of a compound nucleus. Orders of
magnitude of the level spacing and the neutron separation energy for a heavy
mass nucleus are shown. The resonances observed in reaction cross sections,
shown in the upper right part, correspond to the excitation of nuclear levels.
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At the high excitation energies above the neutron binding energies, for most nu-
clei the nuclear system is extremely complex and no nuclear model is capable of
predicting the position and other properties of these excited states. Cross sections
can therefore be accessed only by measurements. For a heavy nucleus the wave
function describing such a highly excited state may have as much as 106 compo-
nents. Also the level density in this region is consequently very high. A neigh-
bouring eigenstate can be excited by only a small change in excitation energy and
may have a completely different wave function. This is a manifestation of what is
also called chaotic behaviour. Due to extreme configuration mixing, the nucleus
in this regime above the neutron threshold has a statistical behaviour. This is ex-
pressed by the assumption that the matrix elements relating nuclear states have a
random character, governed by a Gaussian distribution with zero mean. This sta-
tistical model of the compound nucleus is referred to as the Gaussian Orthogonal
Ensemble (GOE) [1–5].

The statistical model has direct consequences on the observables of the reaction
cross sections. The channel widths are proportional to the square of the matrix
elements and have therefore a chi-squared distribution with one degree of free-
dom. also called the Porter-Thomas distribution [6]. The observed gamma width
of a resonance is the sum of many, for medium and heavy nuclei several tens
of thousand, individual gamma widths and tends therefore more to a Gaussian
distribution. Observed fission widths correspond to a relatively small number
of fission channels, at maximum three or four. The resulting distribution can
be approximated by an effective chi-squared distribution with a small, fractional
number of degrees of freedom [7].

With increasing excitation energy the widths of the states start to overlap and the
resulting cross sections become smooth. The properties of the eigenstates, like the
decay widths, fluctuating from one state to another, become apparent as values
averaged over many resonances. These average values on the contrary can be
predicted by nuclear models, parametrized with average properties. Measured
average cross sections can therefore finetune the parametrization of these models.

At even higher excitation energies, many more decay channels open up and cross
section measurements become very difficult or impossible. Reaction cross sec-
tions may therefore only be accessible by nuclear model calculations.

As an example, in figure 3 the neutron capture cross section of 238U is shown
on an energy scale spanning more than ten decades. The resonance structures,
given by resonance paramters, are clearly visible in the low energy part while
the smooth cross section at higher energies is parametrized in the libraries by in-
terpolation tables. The sudden transition between these two regimes is therefore
not physical but related to these different descriptions.

In order to appreciate the importance of the cross sections at different energies,
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Figure 3: The neutron capture cross section of 238U together with several different neu-
tron source energy distributions in a wide energy range.

typical energy distributions of neutron fluxes are also shown in the figure. The
energy region around a few tens of meV is called the thermal region and is of im-
portance in reactor physics where the by water moderated neutrons are in ther-
mal equilibrium with the water and have Maxwell-Boltzmann distributed veloci-
ties peaked at an equivalent kinetic energy kBT. For a temperature of nearly 300 K
this corresponds to 25.3 meV or a velocity of 2200 m/s. The thermal cross section
at 25.3 meV is an important quantity and can be measured accurately with only
small amounts of material in reactor experiments.

A different energy distribution is found for neutrons in certain stars and respon-
sible for the synthesis of the isotopes heavier than about A = 60 in the universe.
The neutrons are present as a hot gas and also have a Maxwellian kinetic energy
distribution but now at temperatures with kBT ranging from 5 to 100 keV. Stellar
nucleosynthesis will be briefly outlined later.

Several distribution functions describe in a satisfactory way the kinetic energy
distribution of neutrons from the nuclear fission process. The neutrons from 235U
thermal neutron induced fission follow well a Maxwellian kinetic energy distri-
bution, peaked at about 1 MeV. This distribution is also shown in figure 3.
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In the resolved resonance region, which includes the thermal region, the reac-
tion cross sections can be rigorously described in terms of resonance parameters,
which are the properties of the excited states like energy, spin and parity. This
is done by means of R-matrix theory, which is outlined in more detail in a next
section. The advantage of the parametrization of resonant cross sections by the
R-matrix formalism is that relatively few data are needed from which Doppler
broadened cross sections at any temperature can be calculated.

The R-matrix description can be extended to the unresolved resonance region,
where average resonance parameters can be adjusted to describe the cross sec-
tions. A related approach in this energy region and at higher energies is the use
of optical model calculations. The interaction with the nucleus is then modelled
by a complex potential well. By solving the Schrödinger equation one can calcu-
late the cross sections. The difficulty lies in the parametrization of the potential.

Neutron induced reaction data are of great importance for nuclear reactor physics.
In several other fields, including astrophysics and fundamental symmetries, neu-
tron induced reactions play also an important role. Some items will be discussed
in the following sections. In addition, important information on level densities, a
key ingredient in many nuclear reaction codes, can be obtained directly from neu-
tron resonance spectroscopy [8]. Many of the experimental data have been com-
piled [9–13] and once evaluated, made available through nuclear data libraries
like BROND [14], ENDF-B [15], JEFF [16] and JENDL [17] and CENDL [18].

1 The R-matrix formalism

If the wave functions of the nuclear system before and after the reaction were
known, one could calculate the cross section with the usual concepts of reaction
theory. While the incoming waves are known, the reaction modifies the outgoing
wave functions in a generally unknown way.

The idea behind the R-matrix formalism is to use the wave function of the nuclear
system of two particles when they are so close that they form a compound nu-
cleus. Although the wave function of the compound nucleus is extremely com-
plicated, one can expand it in its eigenstates. Matching then the incoming and
outgoing waves to the internal wave function provides a way to describe the
cross section of the reaction in terms of the properties of the eigenstates of the
compound nucleus. These properties are basically the energy, spin, parity, and a
set of partial widths related to the widths of the decay modes of the compound
nucleus.

This method of describing a reaction cross section using only the properties of
nuclear excitation levels, is at the same time also the most important limitation.
No information of the forces inside the nucleus is needed or can be extracted. The
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nucleus is treated as a black box of which the properties of the eigenstates have
to be measured in order to describe the cross sections.

The binary nuclear reactions proceeding from one system of two particles to an-
other system of two particles can be described with the general R-matrix theory.
For neutron induced reactions, but also in other cases, such a reaction goes often
through the formation of a compound nucleus X∗.

A + a→ X∗ → B + b (3)

The R-matrix formalism does not only apply to compound nucleus reactions.
Both direct and indirect reactions can be described with it. The inclusion of the
Coulomb interaction allows us to use it also for charged particle reactions. But
the theory is applicable only in a general way for binary reactions which is ap-
propriate for neutron induced reactions up to energies of several tens of MeV.

In a very general way, the cross section of a two-body nuclear reaction could be
calculated if the nuclear wave functions were known. The wave functions could
be calculated by solving the Schrödinger equation for the nuclear system. This
requires that the nuclear potential is known. When the two particles are far away,
the interaction can be considered absent for neutral particles or to be the Coulomb
interaction for charged particles. In these cases it is indeed possible to calculate
the wave functions.

When the two particles are so close to each other that a nuclear reaction takes
place, the potential of the interaction is extremely complicated. For certain en-
ergy ranges and reactions this potential can still be approximated or calculated
[19] and the wave functions and cross sections can be calculated. In other cases
however, and especially in the resolved resonance region, the complexity of the
reacting system does not allow this.

The first step is to consider that the reaction process can be split up geometri-
cally into two regions for each channel where a channel is the precise constel-
lation of particles and their spins. If the separation is smaller than the channel
radius ac, all nucleons involved in the reaction are close to each other and form a
compound nucleus. Although the wave function of the compound nucleus is ex-
tremely complicated, it can be expanded as a linear combination of its eigenstates
without solving explicitly the Schrödinger equation of the system. In the exter-
nal region, at distances larger than ac, the potential is zero for neutral particles
or is the Coulomb interaction for charged particles and the Schrödinger equation
of the system can be solved. The properties of the eigenstates of the compound
nucleus are included in the R-matrix. Equating the values and derivatives of
the wave functions at the boundary of the internal and external region assures a
smooth wave function and the cross sections can be calculated. The exact inter-
nal wave function is not needed, only the values and derivatives at the nuclear
surface.

8 Introduction to neutron-induced reactions and the R-matrix formalism EJC2014



In the following we describe in more detail the R-matrix formalism which links
the properties of the nuclear states to the cross sections. The cross section in
the thermal energy region is also described by the R-matrix formalism. Reaction
cross sections at thermal energy are the sum of the contributions of all nuclear
states, i. e. the resonances but also the bound states, sometimes referred to as
“negative energy” resonances. Other reaction formalisms have been used in the
past, like the K-matrix formalism [20] still in use for particle physics [21], but for
neutron-induced resonance reactions the R-matrix formalism, and in particular
one of its approximations, is nowadays the preferred formalism.

The R-matrix formalism was first introduced by Wigner and Eisenbud [22]. A
most extensive and detailed overview has been given by Lane and Thomas [23]
and by Lynn [1]. More recently, Fröhner [24] summarized the R-matrix formal-
ism together with other useful considerations on nuclear data evaluation. Other
related references of interest can be found elsewhere [25–35]. A brief outline of
the formalism will be given in order to understand its basic principles.

1.1 Channel representation

It is customary to use the concept of channels in the description of nuclear re-
actions, which will be limited to two particle reactions in the following. The
entrance channel c consists of a particular initial constellation of particles and
all the quantum numbers necessary to describe the corresponding partial wave
function. The type of the two particles α1 and α2, with their spins Iα1 and Iα2 , and
their states of internal excitation are denoted by α. Four quantum numbers are
needed to include the spins of the particles in a channel. The most appropriate
combination is the orbital angular momentum `, the channel spin j, which is the
combined spin of the two particles

j = Iα1 + Iα2 , (4)

the total angular momentum J
J = j + ` (5)

and its projection on the z-axis mJ . So the entrance channel c can be designated
by the set

c = {α, `, j, J, mJ} (6)

Similarly, the exit channel is given by

c′ = {α′, `′, j′, J′, m′J} (7)

The reaction α → α′ may go through the formation of a compound nucleus, like
often the case with neutron induced reactions. The reaction can then be written
as α → A∗ → α′. The spin and parity are of course conserved in all stages of
the reaction and the compound nucleus has its defined spin J and parity π. The
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conservation of spin and parity puts restrictions on the entrance channels that are
open to form the compound nucleus or the exit channels open for the decay of
the compound nucleus. For neutrons and protons the intrinsic spin is 1/2 and the
intrinsic parity is positive. Conservation of angular momentum gives the vector
addition:

J = Iα1 + Iα2 + ` = Iα′1
+ Iα′2

+ `′ (8)

and conservation of parity gives, using +1 for positive and −1 for negative par-
ity:

π = πIα1
× πIα2

× (−1)` = πIα′1
× πIα′2

× (−1)`
′

(9)

The conservation of angular momentum has important consequences for cross
section calculations based on channels. The total number of possible combina-
tions to sum the spins and orbital momentum is (2Iα1 + 1)(2Iα2 + 1)(2`+ 1). Only
2J + 1 orientations of them add up to J. For this reason in expressions for cross
sections of the formation of a compound nucleus level with spin J for a given `
the statistical factor g(J)

g(J) =
2J + 1

(2Iα1 + 1)(2Iα2 + 1)
(10)

is taken into account.

The boundary r = ac is the limit between the internal region, where all the nu-
cleons interact, and the external region where the incident and target particles do
not have a nuclear interaction, other than possibly a Coulomb interaction. Al-
though there is no sharp limit, in practice the channel radius ac can be taken just
slightly larger than the radius R′ = R0A1/3 of a spherical nuclear volume with
A = Aα1 + Aα2 nucleons, and where for R0 usually the value 1.35 fm is used. This
scattering radius can be used as a first approximation of the low-energy potential
scattering cross section σpot with the relation

σpot = 4πR′2 (11)

Experimental values of R′ show larger structures around the smooth curve R′ =
R0 A1/3 which can be well described with optical model calculations. In evalu-
ated nuclear libraries the channel radius ac can be defined to have either the nu-
merical value of a possibly energy-dependent scattering radius R′, or an energy-
independent, mass-dependent channel radius given by

ac = 0.8 + 1.23A′1/3 fm (12)

where A′ is the ratio of the isotope mass to the mass of the neutron. The channel
is defined in the center of mass and the reduced mass of the particles is

mc = mα =
mα1 mα2

mα1 + mα2

(13)

10 Introduction to neutron-induced reactions and the R-matrix formalism EJC2014
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Figure 4: Schematic view of the wave function of a channel as a function of the separation
distance r. The wave function in the internal region r < ac is an expansion of
the eigenstates of the compound nucleus. The full internal (r < ac) wave func-
tion is not needed, only the value and derivative at r = ac where it matches the
known external (r > ac) wave function which is related to the Bessel functions.

and the wave number k, related to the de Broglie wavelength λ, is

kc = kα =
1
λc

=

√
2mαEα

h̄2 (14)

and the relative velocity is
vc = vα = h̄kc/mc (15)

The dimensionless distance ρc is used to indicate the distance rc in measures of
de Broglie wavelengths.

ρc = ρα = kcrc (16)

1.2 The wave function in the external region

The system of the two particles interacting through a central potential V(r) can be
described by the Schrödinger equation of the motion of the reduced mass particle.
Also, using spherical coordinates, the solution ψ(r, θ, φ) can, in case of a central
potential, be separated in a radial and an angular part

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (17)

EJC2014 Introduction to neutron-induced reactions and the R-matrix formalism 11



The radial part R(r) although still depends on the non-negative integer solu-
tions `(`+ 1) of Θ(θ). The integers appearing in the solution of Φ(φ) are m` =
0,±1,±2 . . .± `. The solutions of the angular part Θ(θ)Φ(φ) do not depend on
the central potential and are the spherical harmonics Y`

m`
(θ, φ). Only the solution

R(r) of the radial part depends on the potential V(r). The radial Schrödinger
equation [

d2

dr2 −
`(`+ 1)

r2 − 2mc

h̄2 (V(r)− E)
]

R(r) = 0 (18)

can be solved for the case of the Coulomb potential V(r) = −Zα1 Zα2 e2/(4πε0r).
The general solution is a linear combination of regular and irregular Coulomb
wave functions. In the special case that V(r) = 0, such as for neutrons, equa-
tion (18), after a rearrangement in dimensionless form, is called the spherical
Bessel equation. The solution consists of a linear combination of spherical Bessel
functions of the first type j`(ρ), and of the second type n`(ρ) (or Neumann func-
tions). Two linearly independent complex combinations of j` and n` are known as
spherical Bessel functions of the third type (or Hankel functions) h+` (ρ) and h−` (ρ)
[36, 37]. These are functions of the dimensionless parameter ρ = kr. Although
n`(ρ) → −∞ for r → 0, this irregular solution should be included because we
only need this solution in the external region r > ac. The appropriate solution for
a channel c is a linear combination of waves corresponding to incoming Ic(r) and
outgoing Oc(r) waves for a free particle, R(r) = R`(r) = y` I`(r) + x`O`(r), with

Ic(r) = I`(r) = −iρh−` (ρ) = −iρ
(

j`(ρ)− in`(ρ)
)

(19)

and
Oc(r) = O`(r) = −iρh+` (ρ) = iρ

(
j`(ρ) + in`(ρ)

)
(20)

At large separation distances r → ∞ the asymptotic forms of I(r) and O(r) corre-
spond indeed to plain waves travelling in positive direction (outgoing waves) or
negative direction (incoming waves). The functions j`(ρ) and n`(ρ) together with
O`(ρ) are given in table 1. In figure 5 the function j`(ρ) is shown as a function of
ρ and as a function of equivalent energy for a nucleus with mass A = 238.

1.3 The collision matrix U

The total wave function Ψ in the external region can be expressed as the super-
position of all incoming and outgoing partial waves Ic and Oc, with amplitudes
yc and xc, and summed over all possible channels c.

Ψ = ∑
c

ycIc + ∑
c′

xc′O′c (21)

The complete wave functions in the channel, Ic and Oc, contain the radial parts
Ic and Oc, but also the angular part of relative motion Y`

m`
, as well as the internal

12 Introduction to neutron-induced reactions and the R-matrix formalism EJC2014



Table 1: The spherical Bessel functions and the incoming and outgoing waves from equa-
tions (19) and (20). Derived quantities are given in table 2.

` j` n` O` = I∗`

0 sin ρ
ρ − cos ρ

ρ eiρ

1 sin ρ
ρ2 − cos ρ

ρ − cos ρ
ρ2 − sin ρ

ρ eiρ
(

1
ρ − i

)
` (−1)`ρ`

(
1
ρ

d
dρ

)̀
sin ρ

ρ −(−1)`ρ`
(

1
ρ

d
dρ

)̀
cos ρ

ρ

10
-3

10
-2

10
-1

10
0

10
1

ρ  (dimensionless)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

j L
(ρ

)

2.9×10
-1

2.9×10
1

2.9×10
3

2.9×10
5

2.9×10
7

neutron energy for A=238 (eV)

L=0
L=1
L=2
L=3

Figure 5: The Bessel function j`(ρ) for ` = 0, 1, 2, 3 is shown as a function of ρ and as a
function of equivalent energy for a nucleus with mass A = 238.
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wave functions of the particles and the channel spin, combined in ϕc, and are
written as

Ic = Icr−1ϕci`Y`
m`
(θ, φ)/

√
vc (22)

and
Oc = Ocr−1ϕci`Y`

m`
(θ, φ)/

√
vc (23)

The factor 1/
√

vc normalizes the waves to unit flux. The physical process of the
reaction will result in a modification of the outgoing waves. In the reaction the
coefficients xc of the outgoing waves, depending on the details of the reaction
which are observable in the cross section, have to be determined with respect to
the coefficients of the incoming waves yc. The collision matrix Ucc′ is now defined
as the relation between the coefficients of the incoming and outgoing waves:

xc′ ≡ −∑
c

Uc′cyc (24)

All the physics of the reaction is contained in the elements of the collision ma-
trix. The collision matrix has two important properties. From the conservation
of probability flux in the reaction it follows that the collision matrix is unitary,
which means that its complex conjugate equals its reciprocal, U∗ = U−1 or

∑
c

U∗cc′Ucc′′ = δc′c′′ (25)

The second property follows from time reversal conservation and implies that
the collision matrix is symmetric, Ucc′ = Uc′c.

Finally we can express the total wave function of equation (21) in terms of the
collision matrix:

Ψ = ∑
c

yc

(
Ic −∑

c′
Ucc′Oc′

)
(26)

which is a linear combination of the wave functions for each channel c, consisting
of an ingoing wave and the modified outgoing waves summed over all channels
c′.

1.4 The relation between the cross sections and the collision matrix
U

The relation between reaction cross section and wave functions, describing a
probability, is based on the conservation of probability density. The probabil-
ity density of an incident plain wave, which is the flux of particles jϕ is given by
the quantum mechanical expression

jϕ =
h̄

2mi
(ψ∗∇ψ− ψ∇ψ∗) (27)

14 Introduction to neutron-induced reactions and the R-matrix formalism EJC2014



The connection with the cross section is best illustrated by considering a flux of
incident particles jinc, represented by a plain wave ψinc which can be expanded in
a series of partial radial waves, scattering elastically at a point r = 0 because of
an unknown physical process. The scattered wave, originating at r = 0 is a radial
wave ψsc and far from the scattering center at a distance r in a solid angle element
dΩ the current of scattered particles across the surface r2dΩ is jsc. The total wave
ψ = ψinc +ψsc is a solution of the Schrödinger equation for this system. The cross
section of this reaction, which is a differential cross section, is defined as

dσ =
jsc

jinc
r2dΩ (28)

Integrating over dΩ gives the total scattering cross section. If elastic scattering
were the only process to occur, the total current of ingoing particles equals that
of the outgoing particles. Any reaction, defined as any other process than elastic
scattering, means that there is a difference in the absolute values of the ingoing
and outgoing current.

In the more general description of channels the total wave function is equation
(26). Elastic scattering means here that the entrance and exit channel are the
same. A change of channel in the outgoing wave is considered as a reaction. With
a similar approach, including the expansion of the incoming plane wave into
an infinite sum of partial waves `, and using the full description of the channel
wave functions, the angular differential cross section for the reaction α → α′ has
been worked out by Blatt and Biedenharn [38]. For zero Coulomb interaction the
expression is

dσ

dΩ
=

1
2j + 1

λ2
∞

∑
`=0

B`(c, c′)P`(cos θ) (29)

The coefficients B`(c, c′) are rather complicated factors and contain the collision
matrix elements Ucc′ and relations containing Clebsch-Gordan coefficients for the
spin bookkeeping, eliminating most of the terms in the infinite sum over `.

The cross section for an interaction from channel c to channel c′ is then

σcc′ = πλ2
c |δc′c −Uc′c|2 (30)

If the interaction occurs without a change in the channel c then the process is
called elastic scattering. The cross section is, putting c′ = c

σcc = πλ2
c |1−Ucc|2 (31)

and the cross section for a channel reaction, i.e. any interaction which is not
elastic scattering, is obtained by summing (30) over all c′ except c

σcr = πλ2
c(1− |Ucc|2) (32)
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and the total cross section is obtained by summing all channels c′

σc,T = σc = 2πλ2
c(1− Re Ucc) (33)

In practise, channel to channel cross sections are not useful. One would like to
have the cross sections of α → α′ for the component of total angular momentum
J. The total reaction cross section is obtained by integrating (29) over the full
solid angle to obtain to total cross section for the component of total angular
momentum J

σαα′(J) = πλ2
αg(J) ∑

j,j′,`,`′
|δjj′``′ −Uj`,j′`′ |2 (34)

and the total cross section by summing over all α′

σα,T(J) = 2πλ2
αg(J)∑

j,`
(1− Re Uj`,j`) (35)

1.5 The wave function in the internal region

The complete wave function Ψ can be described as the product of the function
of relative motion and the channel-spin function, giving the internal states of the
particles α1 and α2 and their combined spin. From the function of relative motion
the radial part R(r) is separated and the remaining part is combined with the
channel-spin function to give the channel surface function ϕc

Ψ = ∑
c

ϕcRc(ac) . (36)

The surface functions ϕc have the property of orthonormality over the surface Sc
given by r = ac. This will be exploited to expand certain quantities in terms of
surface functions. It follows immediately that

Rc(ac) =
∫

ϕ∗c ΨdSc . (37)

The integration over a surface, instead of integrating over a volume, is particu-
larly useful in deriving the R-matrix relation using Green’s theorem, expressing
a volume integral in a surface integral.

At the channel surface r = ac the radial wave function for the internal and ex-
ternal region should match. The value Vc and derivative Dc are defined with a
normalization constant as

Vc =

√
h̄2

2mcac
uc(ac)

=

√
h̄2

2mcac

∫
ϕ∗c ΨdSc

(38)
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and

Dc =

√
h̄2

2mcac
ac

(
duc

dr

)
r=ac

=

√
h̄2

2mcac

∫
ϕ∗c∇n(rΨ)dSc

= Vc +

√
h̄2

2mcac
ac

∫
ϕ∗c dSc

(39)

In the internal region the wave function cannot be calculated readily by solving
the Schrödinger equation since the nuclear potential is in general very compli-
cated and the nucleus has many interacting nucleons. But the wave function can
be expressed as an expansion in eigenfunctions Xλ and eigenvalues Eλ

Ψ = ∑
λ

AλXλ (40)

and the coefficients Aλ can be expressed as

Aλ =
∫

X∗λΨdτ (41)

where the integration goes over the volume dτ of the internal region given by
r < ac.

The values and derivatives on the surface r = ac are defined, analog to equation
(38) and (39), as

γλc =

√
h̄2

2mcac

∫
ϕ∗c XλdSc (42)

and

δλc = γλc +

√
h̄2

2mcac
ac

∫
ϕ∗c∇n(Xλ)dSc . (43)

The boundary conditions to be satisfied on the channel surface are taken identical
for all λ

Bc = δλc/γλc . (44)

Applying Green’s theorem to equation (41) gives

Aλ =
∫

X∗λΨdτ

= (Eλ − E)−1 h̄2

2mc

∫
(X∗λ∇n(Ψ)−Ψ∇n(X∗λ)) dSc

= (Eλ − E)−1 ∑
c
(Dc − BcVc)γλc

(45)
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using equations (38), (39), (42), (43) and (44). The expression (40) for the wave-
function can now be written as

Ψ = ∑
c

[
∑
λ

Xλγλc

Eλ − E

]
(Dc − BcVc) . (46)

By multiplying each side of equation (46) by ϕc′ , integrating over the surface
r = ac and using equation (42) one obtains

Vc′ = ∑
c

Rcc′(Dc − BcVc) (47)

with
Rcc′ = ∑

λ

γλcγλc′

Eλ − E
. (48)

The quantity Rcc′ is the R-matrix and contains the properties Eλ and γλc of the
eigenstates λ. The boundary constant Bc can be chosen freely.

1.6 The relation between the R-matrix and the collision matrix U

The values and derivatives of the internal wave function are given by the R-
matrix relation equation (47). The external wave function is given by equation
(26) and is known except for the boundary conditions. The boundary condition
is that both the internal and external wave functions have the same value and
radial derivative at r = ac in order to have a smooth transition. By matching
these conditions and after considerable rearrangements, the collision matrix Ucc′

can be given explicitly as a function of the R-matrix in matrix notation by

U = ΩP1/2[1− R(L− B)]−1[1− R(L∗ − B)]P−1/2Ω . (49)

The introduced complex matrix L is given by

Lc = Sc + iPc =

(
ρ

Oc

dOc

dρ

)
r=ac

(50)

where real matrices Sc is called the shift factor and Pc the penetrability factor. The
matrix Ωc is

Ωc =

(
Ic

Oc

)
r=ac

(51)

which can be reduced for neutral particles, using equations (19) and (20), to

Ωc = exp(−iφc) (52)

from which φc follows

φc = arg Oc(ac) = arctan
(

Im Oc

Re Oc

)
= arctan

(
− j`(ρ)

n`(ρ)

)
(53)
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All matrices in equation (49) are diagonal matrices except U and R. A table of
P`, S` and φ` is given below. They are directly related to the solution of the
Schrödinger equation in the external region, which are the spherical Bessel and
Neumann functions j`(ρ) and n`(ρ) for neutral particles, and can be derived from
the quantities listed in table 1.

If the boundary conditions Bc, defined by equation (44), are real, then the δλc and
the γλc are real and hence R is real. In addition R is symmetrical. A common
choice is to take

Bc = Sc (54)

which eliminates the shift factor for s-waves, but introduces an energy depen-
dence. The choice Bc = −` has also been proposed [24]. At low energy this is
equivalent as can be seen in figure 6, where P`, S` and φ` are plotted as a function
of ρ and as a function of equivalent energy for a nucleus with mass A = 238.

Table 2: The penetrability P`, the level shift S` and the hard-sphere phase shift φ` for
reaction channels without Coulomb interaction, as a function of ρ = kac. These
parameters are derived from the quantities in table 1.

` P` S` φ`

0 ρ 0 ρ

1 ρ3/(1 + ρ2) −1/(1 + ρ2) ρ− arctanρ

` ρ2P`−1
(`−S`−1)2+P2

`−1

ρ2(`−S`−1)
(`−S`−1)2+P2

`−1
− ` φ`−1 − arctan P`−1

`−S`−1

So equation (49) defines the collision matrix in terms of the parameters of the
R-matrix, γλc and Eλ, representing the physical process of the reaction, and the
quantities Pc, Sc, φc, describing the known incoming and outgoing waves Ic and
Oc, outside a sphere with radius ac. The values Bc determine the boundary con-
ditions at the matching point of the internal and external region, and are free to
be chosen. The unknowns of the R-matrix, γλc and Eλ, need to be determined in
order to know the U-matrix and subsequently the cross sections.

1.7 Approximations of the R-matrix

Several approximations of the R-matrix have been developed in the past in order
to overcome the complications of inverting the matrix

[1− R(L− B)]−1
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Figure 6: The functions P`(ρ), S`(ρ) and φ`(ρ) for ` = 0, 1, 2, 3 shown as a function of ρ
and as a function of equivalent energy for a nucleus with mass A = 238.

appearing in equation (49). Except in the case where only 1 or 2 channels are
involved, the inversion is in general impossible without additional assumptions.
The problem can be put in terms of the inversion of a level matrix A of which
the elements refer to the properties of the levels λ of the system. The problem of
inverting a matrix concerning all channels is now put in a problem of inverting a
matrix concerning levels.

The level matrix Aλµ is introduced by putting the following form

(
[1− R(L− B)]−1

)
cc′

= δcc′ + ∑
λµ

γλcγµc′(Lc′ − Bc′)Aλµ (55)
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from which the elements of the inverse of A are(
A−1

)
λµ

= (Eλ − E)δλµ −∑
c

γλcγµc(Lc − Bc)

= (Eλ − E)δλµ − ∆λµ −
1
2

iΓλµ

(56)

with the quantities ∆λµ and Γλµ defined by

∆λµ = ∑
c
(Sc − Bc)γλcγµc (57)

and
Γλµ = 2 ∑

c
Pcγλcγµc (58)

Now the collision matrix from equation (49) can be expressed in terms of A

Ucc′ = ΩcΩc′

(
δcc′ + 2i

√
PcPc′ ∑

λµ

Aλµγλcγµc′

)
(59)

Additional approximations have been formulated in order to simplify this ex-
pression. The most illustrative is the Breit and Wigner Single Level (SLBW) ap-
proximation where only one level is considered. It can be extended to several,
independent levels, which is the Breit and Wigner Multi Level (MLBW) approx-
imation. The formalism of Reich and Moore [39] neglects only the off-diagonal
contributions of the photon channels, which is an accurate approximation for
medium and heavy nuclei. It takes into account the interference between lev-
els and reduces to the BWSL approximation in the limit of a single level. These
three formalisms will be described in some more detail. Other formalisms exist
of which we mention here the formalisms of Kapur and Peierls [40], Wigner and
Eisenbud [22], Adler and Adler [29], Hwang [41] and more recently Luk’yanov
and Yaneva [34].

1.8 The Breit-Wigner Single Level approximation

The expression equation (56) can be simplified if only a single level is present. In
that case the matrix contains only a single element. Therefore(

A−1
)

λµ
= A−1 = Eλ − E + ∆λ − iΓλ/2 (60)

with
∆λ = ∆λλ = −∑

c
(Sc − Bc)γ

2
λc (61)

and
Γλ = Γλλ = ∑

c
Γλc = ∑

c
2Pcγ2

λc (62)
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Substituting these expressions in equation (59) gives the collision matrix

Ucc′ = e−i(φc+φc′ )

(
δcc′ +

i
√

ΓλcΓµc′

Eλ + ∆λ − E− iΓλ/2

)
(63)

From the collision matrix the cross sections can be calculated. For the total cross
section this results in

σc = πλ2
c gc

(
4 sin2φc +

ΓλΓλc cos2φc + 2(E− Eλ − ∆λ)Γλc sin2φc

(E− Eλ − ∆λ)2 + Γ2
λ/4

)
(64)

The first part of the total cross section is the potential scattering or hard sphere
scattering cross section σp = 4πλ2

c gc sin2φc. It is associated with the elastic scat-
tering of the incoming neutron from the potential of the nucleus without form-
ing a compound state. The term with the factor sin2φc is the interference of the
potential scattering and the resonant elastic scattering through formation of a
compound nucleus. Finally the term with cos2φc describes the resonance cross
sections of the channels.

In a more practical case we can see what the cross sections becomes for a neu-
tron entrance channel c = n. We assume that the only open channels are elastic
scattering and neutron capture, Γλ = Γ = Γn + Γγ.

A series expansion of the trigoniometric factors gives for ` = 0 at low energy in
good approximation sinφc = ρ = kac and sinφc = 0 for ` > 0. The cosine term
can be approximated by cosφc = 1 for all `.

In the same way, the reaction cross section is

σcc′ = πλ2
c gc

ΓλcΓλc′

(E− Eλ − ∆λ)2 + Γ2
λ/4

(65)

and the shift ∆λ results from the boundary condition.

1.9 The Breit-Wigner Multi Level approximation

Several resonances can be taken into account as a sum of Breit and Wigner single
level cross sections. This is the most simple treatment of cross sections of many
resonances. It neglects any possible interference between channels and levels
(resonances).

The Breit and Wigner multi level (BWML) approach uses a sum over the levels in
the collision matrix. In the inverse of the level matrix A all off-diagonal elements
A−1

λ µ are neglected, which means neglecting all interference terms between chan-
nels, but not between levels.(

A−1
)

λµ
= (Eλ − E + ∆λ − iΓλ/2)δλµ (66)
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Ucc′ = e−i(φc+φc′ )

(
δcc′ + ∑

λ

i
√

ΓλcΓµc′

Eλ + ∆λ − E− iΓλ/2

)
(67)

1.10 The Reich-Moore approximation

In the approximation of Reich and Moore [39] it is assumed that the amplitudes
γλc are uncorrelated and have a Gaussian distribution with zero mean. This is
a consequence of the chaotic behaviour of the compound nucleus, except for the
very light nuclei. This is known as the Gaussian Orthogonal Ensemble [1, 2, 5].

In medium and heavy nuclei, the number of photon channels is very large. And
since the amplitudes are supposed to have a random distribution with zero mean,
the expectation value of the product of two amplitudes is zero for λ 6= µ, i.e.
< γλcγµc >= γ2

λcδλµ. Summing over the photon channels gives

∑
c∈photon

γλcγµc = ∑
c∈photon

γ2
λcδλµ = Γλγδλµ (68)

Therefore the general expression for A−1, equation (56), can be simplified for the
photon channels and becomes(

A−1
)

λµ
= (Eλ − E)δλµ − ∑

c∈photon
γλcγµc(Lc − Bc)− ∑

c/∈photon
γλcγµc(Lc − Bc)

= (Eλ − E)δλµ − Γλγ(Lc − Bc)δλµ − ∑
c/∈photon

γλcγµc(Lc − Bc)

= (Eλ − E + ∆λ − iΓλγ/2)δλµ − ∑
c/∈photon

γλcγµc(Lc − Bc)

(69)

Comparing this to equation (56), the approximation may be written as a reduced
R-matrix in the sense that the photon channels are excluded and the eigenvalue
Eλ is replaced by Eλ − iΓλγ/2. This Reich-Moore R-matrix is

Rcc′ = ∑
λ

γλcγλc′

Eλ − E− iΓλγ/2
c /∈ photon (70)

The number of energy levels, which may be over hundreds of thousands in heavy
nuclei, determines the number of possible photon decay channels. Excluding
them reduces largely the number of channels and therefore the matrix inversion
needed in the relation between the R-matrix and the cross sections. In the often
occurring case at low energy that only the elastic scattering and neutron capture
channels are open, the number of channels in the R-matrix is one, namely that
of the neutron channel, the photon channels being excluded explicitly. The total
radiation width is present however in the denominator of equation (70). The
R-matrix becomes in this case an R-function of which the inversion is trivial.
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Including other channels, like one or two fission channels, keeps the number of
channels low and makes the inversion still feasible. This approximation of the
general R-matrix is the most accurate one used.

2 Average cross sections

At higher energies the widths of the resonances overlap and the cross sections ap-
pear smooth and with a slow variation with energy. The total and scattering cross
sections without sharply separated or observed resonances can be adequately de-
scribed by representing the particle-nucleus interaction by a complex potential.
This optical potential, so called because mathematically analogous to the scat-
tering and absorption of light in a medium (cloudy crystal ball), results in the
partial scattering or absortion of the beam. The solution of the Schrödinger equa-
tion, usually numerically, with a given potential gives the wave functions from
which the cross sections can be obtained [42]. Much progress has been made
since in the theoretical development and parametrization of a suitable optical
model potentials, see for example refs. [19, 43–47].

By making averages over resonances, the energy averaged collision matrix Ucc
can be related to the energy-averaged cross sections σ. The development of a
given shape of the optical model potential results in a value for Ucc. From the
usual R-matrix expressions we can formulate a number of cross sections as fol-
lows. By analogy to equation (31) the average scattering cross section σcc can be
written as

σcc = πλ2
c gc|1−Ucc|2 (71)

which can be split up into an average shape elastic scattering cross section

σse
cc = πλ2

c gc|1−Ucc|2 (72)

associated with potential scattering, and an average compound elastic scattering
cross section due to resonance scattering

σce
cc = πλ2

c gc

(
|Ucc|2 − |Ucc|2

)
(73)

and after equation (32) the average reaction cross section σcr, corresponding to all
non-elastic partial cross sections, as

σcr = πλ2
c gc(1− |Ucc|2) (74)

and following equation (33) the average total cross section σc, T can be written as

σc,T = 2πλ2
c gc(1− Re Ucc) . (75)
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The sum of the average compound elastic scattering cross section σce
cc and the

average reaction cross section σcr can be considered as the cross section for the
formation of the compound nucleus σc, and can be written as

σc = σce
cc + σcr = πλ2

c gc

(
|Ucc|2 − |Ucc|2 + 1− |Ucc|2

)
= πλ2

c gc(1− |Ucc|2)
(76)

Then the sum of this compound nucleus formation cross section σc and the av-
erage shape elastic scattering cross section σse

cc equals the total cross section σc,T,
which can be checked by

σc + σse
cc = πλ2

c gc
(
1− |Ucc|2 + |1−Ucc|2

)
= πλ2

c gc
(
1− |Ucc|2 + 1− 2 Re Ucc + |Ucc|2

)
= σc,T

(77)

From the above expressions, only the total, shape elastic, and compound nucleus
formation cross sections σc,T σse

cc , and σc contain the elements Ucc, calculated by
optical model, without other terms like |Ucc|2 which cannot be extracted from
optical model calculations. For a direct comparison with experimental data, only
the calculated average total cross section (equation (75)) can be used in a general
way. The shape elastic scattering cross section cannot be distinguished from the
compound elastic scattering. The calculated compound nucleus formation cross
section (equation (76)) is also not directly observable, but can be used in combi-
nation with measured decay channels, like in the surrogate measurements.

Finally the average cross section for a single reaction σcc′ is

σcc′ = πλ2
c gc|δcc′ −Ucc′ |2 (78)

which contains the nearly impossible averaging over |Ucc′ |2.

When we introduce the transmission coefficient

Tc = 1− |Ucc|2 (79)

the compound nucleus formation cross section (unaveraged) can be written as

σc = πλ2
c gcTc (80)

Using the usual concepts in nuclear reaction theory (reciprocity, time-reversal in-
variance), the probability of decay through channel c′ as Tc′/ΣTi the cross section
for the reaction c→ c′ is then

σcc′ = πλ2
c gcTc

Tc′

ΣTi
(81)

where the sum runs over all possible channels. Averaging over a small energy
interval with many resonances, taking into account shape elasting in addition to
compound reactions and redefining Tc as

Tc = 1− |Ucc|2 (82)
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results in the Hauser-Feshbach formula (see also [24, 48–55] for more details)

σcc′ = σse
cc δcc′ + πλ2

c gc
TcTc′

ΣTi
Wcc′ (83)

where the factor Wcc′ is factor which includes elastic enhancement and a correc-
tion for width fluctuations, which can be written as (see for example ref. [53])

Wcc′ =
(ΓcΓc′

Γ

) Γ
Γc Γc′

(84)

The width fluctuations can be calculated most accurately using the GOE triple
integral [56, 57], but also with simpler approximations.

The transmission coefficients for particle channels are given by equation (82).
Two other channels exist which are the photon and fission channels. Their trans-
mission coefficients, related to the average widths and level spacing, are defined
as

Tγ = 2π
Γγ

D
(85)

and

Tf = 2π
Γ f

D
(86)

Dedicated modelizations on photon strength functions, level densities and fission
models, are used for the photon and fission transmission coefficients, but are
beyond the scope of this overview. Good starting points for further reading are
the user guides of specialized computer codes like EMPIRE [58], TALYS [59], and
others.

Concluding remarks

The importance of neutron induced reaction data is evident in a wide variety
of research fields, ranging from stellar nucleosynthesis and nuclear structure to
applications of nuclear technology. The present overview has sketched out an
introduction of the reaction description using the R-matrix formalism. Many de-
tails were intentionally omitted but the provided references should form a good
starting point for the interested reader.
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