

### Nuclear astrophysics of the s- and r-process

René Reifarth Goethe University Frankfurt

*Ecole Joliot Curie School on "Neutrons and Nuclei"* Frejus, France, Sep-28 – Oct-3 2014

### **Nucleosynthesis – tales from the past**



**GOETHE** 

UNIVERSITÄT FRANKFURT AM MAIN

### The nucleosynthesis of the elements





### **Radioctive isotopes in the s-process**





### **Radioctive isotopes in the s-process**





### **Radioctive isotopes in the s-process**





### **Meteorites – hints from the sky**









Oct 2-3, 2014 TIME (a)

### s-process nucleosynthesis

Two components were identified and connected to stellar sites REAL MA

GOETHE

| Main s-process 90 <a<210< th=""><th colspan="2">Weak s-process A&lt;90</th></a<210<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | Weak s-process A<90                                                       |                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|
| TP-AGB stars 1-3 $M_{\odot}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     | massive stars > 8 $M_{\odot}$                                             |                                                     |
| shell H-burning<br>0.9-10 <sup>8</sup> K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | He-flash<br>3-3.5-10 <sup>8</sup> K                 | core He-burning<br>3-3.5-10 <sup>8</sup> K                                | shell C-burning<br>~1·10 <sup>9</sup> K             |
| kT=8 keV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kT=25 keV                                           | kT=25 keV                                                                 | kT=90 keV                                           |
| 10 <sup>7-</sup> 10 <sup>8</sup> cm <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>10</sup> -10 <sup>11</sup> cm <sup>-3</sup> | 10 <sup>6</sup> cm <sup>-3</sup>                                          | 10 <sup>11</sup> -10 <sup>12</sup> cm <sup>-3</sup> |
| (%) Horonovective envelope<br>H - burning<br>H - burning<br>He |                                                     | Hydrogen burning<br>in the shell<br>Core<br>Helium burning<br>in the core |                                                     |

### s-process models - classical s-process





# s-process models – T-AGB stars, <sup>22</sup>Ne phase GOETHE



Couture & Reifarth, ADNDT, 93 (2007) 807







# H-entrainment into He-shell flash convection zone





Much higher neutron densities, since 13N get mixed deeply into the hot zones. 13C gets processed in minutes instead of 1000s of years.

<sup>13</sup>N(73)<sup>13</sup>C(d,h)<sup>16</sup>O A Mentrous for the production of the heavy elements: Sr. Be Y. Rb, Zr, La, Pb, Mo

F. Herwig, The Astrophysical Journal 727 (2011) 89

## The i-process path







# <sup>135</sup>I(n,γ)

### the p-process



- 35 stable neutron-deficient isotopes between <sup>74</sup>Se and <sup>196</sup>Hg
- Dominating reactions: (p,γ) for light nuclei;
  (γ,n), (γ,p), (γ,α) and β<sup>+</sup> decays for heavier nuclei
- Temperatures of 2-3×10<sup>9</sup> K during time scales of a few seconds are required (type II supernovae explosions)



# (n,γ) reactions in the p-process



- very high temperatures
- γ-induced reactions
- result: free neutrons and neutron-deficient material



#### Arnould & Goriely, Physics Reports 384 (2003) 1-84

Oct 2-3, 2014

### **Red Giants – easy to spot**





### **Red Giants become White Dwarfs**





Ring nebula illuminated by the White Dwarf in the center.

### What's needed?



### Neutron induced Reaction rates (1-200 keV)



**Activation Method** 

<sup>14</sup>C(n,γ)<sup>15</sup>C reaction detected via <sup>15</sup>C(β<sup>-</sup>)<sup>15</sup>N decay ( $t_{1/2}$ =2.5 s)



<sup>14</sup>C sample irradiated for 10 s, then activity counted for 10 s ("cyclic activation")

Determination of neutron flux via <sup>197</sup>Au(n,γ)<sup>198</sup>Au

Neutron source: <sup>7</sup>Li(p,n)<sup>7</sup>Be



R. Reifarth et. al, PRC C 77, 015804 (2008)

# A standard neutron spectrum – working horse!





Oct 2-3, 2014

René Reifarth

23

### **Other neutron spectra**





# $^{15}$ C – $\gamma$ -spectra





## **Description and Deconvolution**





# Neutron Captures – time-of-flight technique



- the TOF-technique is the only generally applicable method the determine energy-dependent neutron capture cross sections
- beam pulsing & distance to the neutron production site significantly reduce the number of neutrons available on the sample

Reifarth et al. J. Phys. G: Nucl. Part. Phys. 41 (2014) 053101

GOETHE

### The <u>Frankfurt neutron source at the Stern-Gerlach-</u> <u>Zentrum (FRANZ)</u>





Reifarth et al. PASA 26 (2009) 26, 255–258

Oct 2-3, 2014

# NAUTILUS – Neutron capture with short flightpath





# NAUTILUS – Expected Time-Of-Flight spectrum











Measurements of  $(p,\gamma)$  or  $(\alpha,\gamma)$ rates in the Gamow window of the p-process in inverse kinematics in the Experimental Storage Ring.

Advantages:

- Applicable to radioactive nuclei
- Detection of ions via in-ring particle detectors (low background, high efficiency)
- Knowledge of line intensities of product nucleus not necessary
- Applicable to gases



### • Neutron flux: $10^{14}$ n/cm<sup>2</sup>/s -> • Neutron target: 2 10<sup>10</sup> n/cm<sup>2</sup> • 10<sup>7</sup> ions, 1 MHz: 10<sup>13</sup> ions/s e<sup>-</sup>-cooler Schottky pick-up Counts per day: 20 σ / mb revolving ions particle detection reactor core fuel rods neutrons

Reifarth & Litvinov, Phys. Rev ST Accelerator and Beams, 17 (2014) 014701

**Neutron captures in inverse kinematics** 



### **Neutron capture**





- Same track as primary beam
- Reacceleration necessary electron cooler
- Schottky analysis determine revolution frequency

## **Schottky Analysis of revolving ions**





# **Charged-particle production**, (n,2n)



- (n,α) : particle detectors
- (n,p) : particle detectors
- (n,2n) : particle detectors or Schottky







### (n,f) : only at higher energies E<sub>CM</sub> > 10 MeV





- Energy regime: E<sub>n</sub> >100 keV
- Half live limit:  $t_{1/2} > 0.5$  h, if reactor is not pulsed
- Pulsed reactors might allow even smaller half-lives





- Radioactive isotopes become more and more in reach of current experimental research
- Neutron induced reaction studies are difficult on stable, very difficult on unstable nuclei
- FRANZ & NAUTILUS will push the limit further
- A combination of a reactor and a ion storage ring might open a new era