

Detection of Neutrons: Part II

Ralf Nolte

Table of Contents

- Introduction
 - Neutrons in Science and Technology
 - Interaction of Neutrons with Matter
- Neutron Detection
 - General Properties of Detectors
 - Detectors for Thermal and Slow Neutrons
 - Detectors for Fast Neutrons
 - Recoil Detectors: Prop. Counters, Scintillation Detectors, Recoil Telescopes
 - (Fission) Ionization Chambers
- Techniques for Neutron Measurements
 - Time-of-flight
 - Spectrometry
 - Spatial Neutron Distribution
- Absolute Methods, Quality Assurance
 - Associated particle methods
 - Key comparison

Recoil Detectors: Proton Telescopes

Recoil Telescopes as Reference Instruments

- Scintillation detector used as primary reference instrument?
 - Properties of the scintillators show variations: Light output, H/C ratio
 - Full angular distribution for n-p scattering required
 - Interference from ¹²C(n,x) interactions
 - Detection efficiency difficult to calculate 'accurately' (1-2% uncertainty)
 - ⇒ Calibration required!

The Classical Low-Energy Telescope: T1 of PTB

Los Alamos in-beam design:

- Two CO_2 prop. counters: ΔE
- Surface barrier detector: E
- Radiator source distance: 20-35 cm
- 1 mm Ta aperture:
 Ø(20.98±0.01) mm
- Energy range :
 - 1.2 MeV 15 MeV using three radiators
 - up to 20 MeV with degrader foils
- Single rates: < 10⁴ s⁻¹
- Coincidence rate: 0.5 2 s⁻¹
 P1 × P2 × SB
- Coincidence resolution: 2 µs
- Multi-parameter DAQ

T1: Recoil Proton Spectra

• D(d,n)³He, D₂ gas target, $E_{d,0}$ = 7.11 MeV, $\langle E_n \rangle$ = 10.02 MeV

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

T1: Analysis

High-Energy Telescopes

Neutron energies above 20 MeV pose special challenges:

- Large proton ranges: degraders, thick stopping detectors
- Charged particles from n+¹²C: high-resolution ∆*E*-*E* particle discrimination
- Neutron induced coincidences: more coincidence conditions
- 'Grey' apertures: active collimation by veto detectors (*E_n* > 100 MeV)

RPT Design Exercise: 75 MeV

Test of a proton recoil telescopes for TLABS neutron beam facility:

- Neutron Source: ^{nat}Li (8 mm) + p (75 MeV): quasi-monoenergetic spectrum, <E_{n,0+1} > = 71.6 MeV (FWHM ≈ 3.2 MeV)
- Collimated beam (50 × 50 mm)²

... which one made the race?

 $\Delta E_2 E$

122-42

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Cu coll. + Λ*Ε-Ε*

PE

RPT Design Exercise: Results

- Good particle discrimination with 500 μm Si-PIPS as ΔE detectors
- Less neutron induced coupling with $\Delta E_1 \Delta E_2 E$ scheme

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Fast Neutrons: Ionization Chambers

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Fission Ionization Chambers

- Electrical field:
- Charge per unit track segment:
- Voltage change induced by drift along dx: $CU_0 dU = q E dx$
- Integration along frag. track:

Drift velocities: $v = \mu \cdot E/p$, $v_{el} \gg v_{ion}$ \Rightarrow lon-induced signal suppressed by time constant of the pre-amp.

Electron-induced signal depends on the location of the ionizing event

$$E = U_0 / d$$
$$q = \frac{e_0}{W} \left(\frac{dE_{\rm ff}}{dr} \right)$$

$$V = \frac{e_0}{C} \int_0^R \left(\frac{1}{W} \frac{dE}{dr}\right) \cdot \left(1 - \frac{r}{d} \cos\Theta\right) dr$$

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Simulated Pulse-Height Spectra

Monte Carlo calculations:

- (A, Z) of the fissioning system: multiple-chance fission!
- Range data for U₃O₈ and Ar/CH₄
- Model for the surface roughness: <r_a>
- FF distributions: Y(E_n, A_{ff}, Z_{ff})
- FF anisotropy: $W(\Theta^{CM}) = (1+B \cdot \cos \Theta^{cm})/2\pi$
- Incomplete momentum transfer

Fission Fragment Detection Efficiency

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

•

•

²⁴²Pu Fission Chambers for Cross Section Measurements

HZDR

- ²⁴²Pu layers produced by molecular plating (U. Mainz)
 - $m_{\rm Pu}$ = 42 mg, ²⁴²Pu: 99.9668 %
 - eight layers: 116 μg/cm²
 - *A*_α= 6.17 MBq
 - $R_{\rm sf} = 34 \, {\rm s}^{-1}$
- Number of fissile atoms N_{Pu}:
 - Spontaneous fission rate *t*_{1/2} = (6.77 ± 0.07)×10¹⁰ a
 - Narrow-geometry alpha counting
- Fast pre-amp.'s: α pile-up!
- Continuous P10 flow (nanofilters)

Calculation of the Detection Efficiency

Absorption of fragments in the fissile layer:

 $\varepsilon_{\rm f} = 1 - \frac{t}{2R_{\rm ff}} + \dots \approx 0.94 - 0.99$

Higher order contributions:

- Anisotropic fragment emission
- Momentum transfer

 Uncertainty: u_ε/ε_f ≈ 1% - 2% depends very much on sample quality

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

The Measurement of Neutron Energy Distributions: TOF Methods

TOF Spectrometry: Principles

• Neutron energy determined from a velocity measurement:

$$v = rac{d}{t} \Rightarrow E = (\gamma - 1) \cdot mc^2, \quad \gamma = rac{1}{\sqrt{1 - (v/c)^2}}$$

• Energy resolution:

$$\frac{\delta E}{E} = (\gamma + 1)\gamma \frac{\delta v}{v}, \quad \frac{\delta v}{v} = \sqrt{\left(\frac{\delta t}{t}\right)^2 + \left(\frac{\delta d}{d}\right)^2}$$

Time and distance resolution contribute in same way: \Rightarrow express flight time δt by an equivalent distance δd_{eq}

Measurement of TOF Distributions

- Start signal: neutron detector
- Stop signal: beam pick-up
- Inverted time scale: TOF = t_{stop} t_{start}
- <u>Measured</u> neutron flight time: t_m = TOF_γ + d/c TOF_n

NB: Measured flight time *t*_m includes time spent in target and detector!

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Width of TOF Peaks

- Contributions to the width of TOF peaks : ٠
 - Beam: time spread of the beam pulse δt_{heam}
 - Source: beam transit time energy-loss broadening kinematical broadening slowing-down time
 - Sample: kinematical spread

Detector: transit time multiple scattering spread

$$\delta t_{\rm src} = d_{\rm src} / v$$

$$\delta E_{\rm src} = f_{\rm kin} (E_{\rm beam}, E_{\rm n}) \cdot (dE/dx) \cdot d_{\rm src}$$

$$f_{\rm kin} (E_{\rm n}, \Theta) \cdot \delta \Theta$$

$$\delta t_{\rm slow} \approx A / \Sigma_{\rm s} v$$

$$\delta \boldsymbol{E}_{spl} = \boldsymbol{f}_{kin}(\boldsymbol{E}_{n},\boldsymbol{\Theta}) \cdot \boldsymbol{\delta}\boldsymbol{\Theta}$$

 $\delta t_{det} = d_{det}/v$ $\delta t_{\rm ms}$

Total TOF spread: ٠

۲

- $\delta t^{2} = \sum_{i} \delta t_{i}^{2} + \sum_{i} \left(\frac{t_{j}(\boldsymbol{E}_{n,j}, \boldsymbol{I}_{j})}{2\boldsymbol{E}_{n,i}} \right)$ $\delta E_{n,i}^2$ Relative importance of time and energy broadening
- depends on the details of the setup:
- Masses of projectiles and target nuclei: source and sample
- Flight paths: source and sample

Time Response of Organic Scintillation Detectors

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Example: PTB TOF Spectrometer

<i>E</i> _{n,0} = 10 MeV
– δ t _{beam} = 1.6 ns
$-\delta E_{n,src}$ = 106 keV
– d _{src} = 17 cm, d _{det} = 12 m
$\Rightarrow \delta E_n / E_n = 1.4 \%$ for $E_{n,det} = 2 \text{ MeV}$
1.8 % for <i>E</i> _{n,det} = 10 MeV

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Example: PTB TOF Spectrometer

Kinematical broadening

- Polyethylene (PE) sample
- Incident energy: $E_{n,0} = 10.21 \text{ MeV}$
- Scattering angle: Θ = 29.3°

Separation of TOF peaks

- Vanadium sample
- E_{n,0} = 10.21 MeV
- Θ = 36.8°

Self-TOF Spectrometers

- Source of the TOF Start/Stop signal:
 - Pulsed beam (pick-up, RF)
 - Time-correlated associated particle (TCAP)
 - Recoil particle double-scattering experiment
 ⇒ self-TOF spectrometry

• Example: TOFOR spectrometer at JET

- Designed for DD plasmas: <*E_n*> = 2.5 MeV
- Energy resolution: ∆E/E ≈ 7%
- Dynamic range: 10⁵

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Neutron Detectors for TOF Measurements

• ⁶LiGlas Detectors:

- Suitable for neutron range $E_n < 1 \text{ MeV}$
- Strong photon sensitivity, stong energy dependence around 250 keV res.
- Complicated time response due to 250 keV resonance: $\delta t \approx 3 4$ ns
- Sensitive to (epi)thermal background neutrons: $\sigma \propto 1/v$

Fission Chambers

- Secondary standard cross sections: ^{235,238}U(n,f)
- Low but calculable detection efficiency: reference instrument
- Slow time response requires long flight paths: $\delta t \approx 3 6$ ns

Organic scintillation detectors: working horses for TOF meas.

- Fast response: $\delta t \approx 1 2$ ns, often limited by PMT's
- High detection efficiency: $\varepsilon \approx 10 20\%$
- Many sizes and shapes possible: 1 cm 1 m
- Diff. n-p cross section is primary standard
- Discrimination of photon background by PSD
- Quenching requires low pulse-height thresholds for E_n < 1-2 MeV

TOF Variants : Slowing-Down Spectrometry

 $\frac{\sigma_{t_E}^2}{\bar{t}_{-}^2} \approx \sqrt{\frac{2}{3A}} = 5.7 \times 10^{-2}$, mean energy:

Heavy (A = 208) non-absorbing moderator with constant isotropic scattering cross section:

- Small mean log. energy loss per collision:
- Rel. std. deviation of

slowing-down time:

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Lead Slowing-Down Spectrometer (LSDS)

 Semi-empirical relation between energy *E* and slowing-down time *t*:

- K and t_0 :
 - MC simulations
 - resonance analysis
- Very high neutron flux
- Energy range 0.1 100 eV
- Application:
 - Reactions with rare isotopes
 - Fission of very radioactive isotopes
 - Fission of isomers

Detectors inserted in the moderator:

- Compensated fission chambers
- Solar cells with fissile layers

- ...

The LANSCE Slowing-Down Spectrometer

Resolution broadening

Ref.: D. Rochman et al., NIMA 550 (2005) 397-413

- High-purity lead cube: V = (1.2 m)³
- WNR beam (800 MeV p), tungsten target
- Resolution: △E/E ≈ 0.29

TOF Spectrometry of Incompletely Pulsed Beams

Pulsed beams with rep. frequency *f* and flight path *d*

⇒ Frame-overlap threshold: 'only one pulse at a time'

$$\mathbf{v}_{c} = \mathbf{d} \cdot \mathbf{f} \Rightarrow \mathbf{E}_{c} = (\gamma_{c} - \mathbf{1}) \cdot \mathbf{mc}^{2} \approx \frac{1}{2} \mathbf{mv}_{c}^{2}$$

Possible workarounds:

- Spectrometry using recoil detectors
- Bonner Sphere spectrometry
- \leftarrow Spectral fluence Φ_E for $E > E_c$ from TOF measurement
- Combination of measurements at different flight paths *d* and Monte Carlo calculations for very low energies

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

The Measurement of Neutron Energy Distributions: Unfolding Methods

Need for 'Non-TOF' Spectrometry

- There are situations where TOF cannot be used:
 - Accelerators based sources with high rep. rates: f > 0.1 1 MHz
 - Neutron diagnostics at nuclear fusion experiments
 - Sources without well-defined flight paths: Transmission through shields, fusion benchmarks
 - Neutrons in the environment
 - ...
- But there is a way-out:

The spectral neutron distribution $(d\Phi/dE)$ is related to the distribution of 'events' (dN/dL) in the detector:

$$N_L = \int R(L, E) \cdot \Phi_E \, \mathrm{d}E \to N_i \approx \sum_j R_{i,j} \Phi_j$$

(Fredholm integral equation of the first kind)

The attempt to solve this equation is called 'spectrometry'

- High-resolution spectrometry
 - Spectrometry of recoil nuclei: organic scintillation detectors recoil telescopes
 - Spectrometry using reaction products:
 - ³He counters and ionization chambers
 - sandwich spectrometers
 - diamond detectors
 - Capture-Gated spectrometry
 - Make response matrix R as diagonal as possible!
- Low-resolution spectrometry
 - Multi-sphere spectrometry
 - Spectrometry using threshold activation foils

 Unfolding problem: How to get from N_j (data space) to Φ_j (space of possible solutions)

• Problem of unfolding:

- There is a multitude of solutions Φ_j which produce the same N_i
- The response R_{i,i} is not exactly known
- The N_i have uncertainties u_i

$$\Rightarrow N_i + u_i = \sum_j R_{i,j} \Phi_j$$

tions Φ_j ctly known $\int_{1}^{\infty} \int_{2000}^{100} \int_{100}^{100} \int_{100$

2500

Nota bene:

- There is no exact solution!
- What is needed is a consistent <u>approximate</u> solution
- Usually prior information is available and <u>must</u> be included

2.5

180

En / MeV

Technical Approaches to Unfolding

• Direct matrix inversion: $N \approx R \cdot \Phi \Rightarrow \Phi \approx (R^{\mathsf{T}} \cdot R)^{-1} \cdot R^{\mathsf{T}} \cdot N$ but: $(R^{\mathsf{T}} \cdot R)^{-1}$ exists is usually ill-conditioned (if it exists at all): $(R^{\mathsf{T}} \cdot R)^{-1} = V \cdot \Sigma^{-1} \cdot U^{\mathsf{T}}$ with U, V orth., $\Sigma = \operatorname{diag}(\gamma_i), \gamma_1 \geq \gamma_2 \geq ... \geq 0$

 \Rightarrow 'noise' is amplified, $\Phi_i < 0$ possible!

- ⇒ More suitable methods are required:
 - **Iterative procedures:** usually black-magic recipes!
 - Stochastic methods: Monte Carlo, genetic algorithms, ...
 - **Regularisation:** add constraints to enforce smoothness
 - Least-squares adjustment: usually linearization required
 - Bayesian parameter estimation: requires an analytical model
 - Maximum entropy principle: justifiable from information theory consistent treatment of prior information and uncertainties

The PTB scintillation spectrometer : Response Matrix

Figure 3: Response functions of the NE213 scintillation detector for 9 neutron energies selected between 2.5 MeV and 16 MeV by time-of-flight slices. The experimental spectra (black histogram) are compared with and normalized to responses calculated with the NRESP7 code (red lines).

Ref.: A. Zimbal et al., PoS(FNDA2006) 035 www.pos.sissa.it

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Measurements at JET

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Ohmic and NBI Heated JET Discharges (DD)

• Passive (offline) gain stabilization: $f_{IFD} \approx 1 \text{ kHz}$

• Unfolding with MAXED using a flat (uninformative) prior

Ref.: A. Zimbal et al., PoS(FNDA2006) 035 www.pos.sissa.it

The Dark Side of Unfolding: Artefacts

T(d,n), E_d = 643 keV, Θ = 0°: 2"×2" BC501A detector with A = 7.2%, B = 10.5%

Artefacts result from imperfect response function:

- Calc. response matrix: cross sections, e.g. $^{12}C(n,n'3\alpha)$, light yield $L(E_n)$, resolution $\Delta L/L$
- Exp. response matrix:
- x: imperfect CFD timing (walk effect), imperfect satellite subtraction

Few-Channel Unfolding: Multi-Sphere Spectrometry

- Response matrix: MCNPX
- Precise dimensions
- Measured PE densities
- Calibrated ³He pressures
- Regular stability checks
- Background studied in UDO underground laboratory

BS spectrometer **NEMUS**

- ³He detector inside moderators
- bare counter: (epi)thermal
- 12 PE spheres (3"-18"): E_n < 20 MeV
- 4 PE/(Pb,Cu) spheres: E_n < 1 GeV

Analysis: Bayesian Parameter Estimation

- Response functions are very similar
- Components of neutron spectra known
 - Thermal peak : ≈ 25 meV
 - Slowing-down cont.: ≈ flat
 - Evaporation peak: ≈ 2-3 MeV
 - 'Spallation' peak: ≈ 100 MeV

⇒ Analytical model and Bayesian parameter estimation

⇒ The 'spallation' peak (~100 MeV) cannot determined only from the data!

Capture-Gated Spectrometry

- Full-energy events in doped organic scintillators 'tagged' by capture signal ⇒ response 'more diagonal'
- Triggers: ¹⁰B(n,α)⁷Li Q = 2.79 MeV
 ⁶Li(n,t)⁴He Q = 4.78 MeV (preferred!)
- PH signal only from fast recoils: t_{int} << t_{life}

 \Rightarrow Total pulse height $L(E_n)$ not prop. to $E_n!$

2"×2"

Proton Recoils

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Example: 5"×"3 boron-loaded detector (BC454)

Ref.: T. Aoyama, NIMA 333 (1993) 492- 501

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

NASA Mars Mission

Modern Spectrometry with RTPs: Proton Tracking

7

Recoil telescope with track reconstruction:

- E detectors: E_p
- ΔE detector: track reconstruction, Θ_p
- \Rightarrow

 $E_{\rm n} = E_{\rm p} / \cos^2 \Theta_{\rm p}$

• Example: TPR-CMOS (IRSN Cadarache)

Ref.: J. Taforeau: Un spectromètre à pixels actifs pour la métrologie des champs neutroniques, Thèse, Université de Strasbourg 2013

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Spectrometry using Exothermic Reactions

- ⁶Li(n,t)⁴He, Q = 4.78 MeV, 3 He(n,p)T, Q = 0.76 MeV
- High thermal cross section: $\sigma = \sigma_0 \cdot (v_0/v)$ for $E_n < 100 \text{ keV}$ ٠
- Spectrometry by detection of <u>both</u> reaction products:
 - (epi)thermal peak: c_{th}
 - fast peak: c_f
 - zero bias: c_0

NB: constant W-value assumed !

Proportional counters

³He and ⁶Li Sandwich Spectrometers

³He spectrometer

- Small recoil energies
- n/γ interference
- High efficiency
- Small energy loss

<complex-block>

Ref.: H. Bluhm et al., NIM115 (1974) 325-337

⁶Li spectrometer:

- High recoil energies
- Good γ suppression
- Resolution depends on radiator thickness
- *E*_{n,min} = 100 500 keV

Spectrometry using scCVD Diamond Detectors

Single-crystal chemical vapor deposition diamond detectors (scCVD):

- Neutron detection via ¹²C(n,α)⁹Be: full-energy peak
- Large displacement energy (42 eV/atom) ⇒ high radiation hardness
- High thermal conductivity ⇒ operation at elevated temperature
- But: large band gap (5.5 eV) ⇒ resolution not as good as silicon (1.11 eV)

⇒ Very attractive material for neutron <u>spectrometers</u>

The Measurement of Spatial Neutron Distributions

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

Seite 48 von X

The Micromegas Beam Imager for n_TOF

Neutron detection:

- ⁶Li, ¹⁰B converter
- Counting gas: p, He recoil
- Energy-resolved images: 10 eV 20 MeV
- Several 1-dim. and 2-dim. (strips or pixels) read-out schemes
- Spatial resolution: ≈ 0.5 mm

Micromegas Results

- Profile of the n_TOF neutron beam:
 - Converter: LiF, ¹⁰B₄C
 - Readout anode: 6 cm × 6 cm with 106 x and y strips, Gassiplex readout chip
- Determination of beam coverage factors for large sample

Absolute Methods, Key Comparisons

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

Seite 51 von X

Stability and Consistency of Neutron Measurements

- Ref. detectors depend on ref. materials
 - Purity of gases (H₂, CH₄, C₃H₈): RPPC
 - Tristearin (C₅₇H₁₁₀O₆) radiators: RPT
 - ^{235,238}U deposits: FC
- ⇒ Test of stability and consistency
- ⇒ Comparison with 'absolute methods'

Consistency

Nationales Metrologieinstitut Seite 52 von X Traceability of detector calibrations to the SI requires 'Absolute' methods for neutron production:

- Manganese bath: ⁵⁶Mn(n,γ) in a saturated MnSO₄ solution
 - only for radionuclide sources
 - 50% correction for capture and leakage
 - 0.5 % uncertainty of the emission rate
- Time-correlated associated particles ('tagged neutrons'):
 - ²⁵²Cf(s.f.): standard technique, relies on <v> ✓
 - D(d,n)³He: standard technique, difficult ✓
 - T(d,n)⁴He: standard technique ✓
 - H(n,n)p: low count rates ✓
 - D(γ,n)p: requires a tagged bremsstrahlung beam
 - D(p,n)2p: very difficult
- Uncertainty of (TC)AP method: 1% 1.6% for T(d,n)⁴He, E_n ≈ 14.2 MeV

²⁵²Cf(s.f.) Ionization Chamber

'Tagging' of neutrons by the associated charged particle

- T(d,n)⁴He, *E*_d = 150 keV
 - $\Theta_n = 26.5^\circ, \qquad \Theta_\alpha = -150^\circ$
 - $E_n = 14.48 \text{ MeV}, E_\alpha = 2.46 \text{ MeV}$
 - no (d,d) background
 - ³He(d,p)⁴He can be a problem
 - 'routine' 14 MeV standard
- D(d,n)³He, *E*_d = 4 MeV
 - $\Theta_n = 40^\circ$, $\Theta_{3He} = -59.8^\circ$,
 - *E*_n = 6.13 MeV, *E*_{3He} = 1.14 MeV
 - strong (d,d) and (d,p) background requires ∆*E*-*E* separation of ³He
- Problem of all TCAP experiments: Loss of correlation due to angular straggling!

TCAP with T(d,n) at $E_{d,0}$ = 150 keV

- Shape of the associated neutron cone:
 - Tritium depth profile in Ti(T) target
 - Position of the beam spot
- Modeling of the transport of 150 keV d in Ti(T) is a challenge!

Metrological Cooperation: Key Comparisons

- Organized within the CCRI(III) of the BIPM
- Regular Key Comparisons (every 10 years)
- Results go into the KCDB: www.bipm.org
- the 'usual suspects':
 - CIAE (PR China)
 - LNE / IRSN (France)
 - IRMM (EU)
 - NPL (UK)
 - NMIJ (Japan)
 - NIST (USA)
 - PTB (Germany)
 - VNIIM (Russia)
- Typical uncertainties:
 - KCRV: **1 1.5** %
 - Standard deviation: 2 4 %

Summary:

Neutron detection means conversion to charged particles:

- Products of two-particle reactions with high Q value
- Recoil particles
- Fission fragments

Measurements techniques:

- Time-of-flight spectrometry
- Unfolding of signal distributions

Normalization:

- relative to cross sections standards
- 'absolute' neutron counting

Tributes

Frank Brooks 1931-2012

Glenn F. Knoll 1935 – 2014

Thank you for your attention!

