

Detection of Neutrons: Part I

Ralf Nolte

Professional CV

1976 :	High	School	Examination
---------------	------	--------	-------------

- 1977-1983: Physics studies at Georg-August Universität in Göttingen
 - **1987**: Dr. rer. nat. (experimental nuclear physics)
- **1987-1989:** PostDoc at IPP in Garching (ASDEX tokamak)
- Since 1990 : Physikalisch-Technische Bundesanstalt Braunschweig (PTB)
- Since 2003: Head of working group 6.42 'Neutron Metrology'

Nationales Metrologieinstitut Seite 2 von X

利加建器核物理国家实验

The PTB Ion Accelerator Facility (PIAF)

PTB is the National Metrology Institute (NMI) of Germany

PTB department 6.4 operates PIAF:

• 3.75 MV van-de-Graaff:

p, d, α beams ns pulsing system (1.5 – 3 ns) *will be replaced by a 2 MV Tandetron in 2016!*

• CV28 isochronous cyclotron: p, d, α beams

$$E_{\rm p}$$
 < 19 MeV, $E_{\rm d}$ < 13.5 MeV, $E_{\rm a}$ < 28 MeV

internal pulse selector $(1/f_{cyc} \approx 1 \ \mu s)$

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut Seite 4 von X

Table of Contents

- Introduction
 - Neutrons in Science and Technology
 - Interaction of Neutrons with Matter
- Neutron Detection
 - General Properties of Detectors
 - Detectors for Thermal and Slow Neutrons
 - Detectors for Fast Neutrons
 - Recoil Detectors: Prop. Counters, Scintillation Detectors, Recoil Telescopes
 - (Fission) Ionization Chambers
- Techniques for Neutron Measurements
 - Time-of-flight
 - Spectrometry
 - Spatial Neutron Distribution
- Absolute Methods, Quality Assurance
 - Associated particle methods
 - Key comparison

Where to Find More Reference Material?

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

- W.D. Allen: Neutron Detection (1960)
- J.B. Marion, J.L. Fowler: Fast Neutron Physics (1960)
- K.H. Beckurtz, K. Wirtz: Neutron Physics (1964)
- W.R. Leo: Techniques for Nuclear and Particle Physics Experiments (2nd ed. 1994)
- G. Knoll:

Radiation Detection and Measurement (4th ed. 2010)

Conference proceedings:

- H. Klein *et al.* : Proc. NEUSPEC 2000 NIMA 475 (2002)
- SORMA, Crete, ND, ...

Historical Prelude: Chadwick's Discovery of the Neutron

Sir James Chadwick (1932)

Possible Existence of a Neutron

IT has been shown by Bothe and others that beryllium when bombarded by a-particles of polonium emits a radiation of great penetrating power, which has an absorption coefficient in lead of about 0.3 (cm.)⁻¹. Recently Mme. Curie-Joliot and M. Joliot found, when measuring the ionisation produced by this beryllium radiation in a vessel with a thin window, that the ionisation increased when matter containing hydrogen was placed in front of the window. The

Ref.: J. Chadwick, Nature 132 (1932) 3252

... the man who never laughed

- Correct explanation of the experiments by I. Curie and F. Joliot
- All elements of a modern neutron detector were present:
 - Neutron converter
 - Detector for charged particles

utron

Neutrons in Science ...

Laboratory for fundamental physics: EDM, …

- Ideal tool for probing matter:
 - No Coulomb force: deep penetration
 - Strong Interaction: isotope-specific detection
 - Magnetic moment: magnetic structures
 - Low energies: crystal structures

... Technology

Neutrons can be used to produce energy

- Biggest disadvantage: the (free) neutron is unstable: $\tau \approx 880 \text{ s}$
- Intense neutron sources require considerable efforts:
 - Reactors
 - High-power low-energy accelerators
 - Spallation sources

... and the World Around

Höhe

km

30 =20 =

15 -

- **Cosmic Neutron:**
 - Production in the atmosphere by galactic radiation
 - Production on the sun
- Neutron monitors: • **Diagnostic for solar processes**
- **Radiation protection at flight levels:** • $dH_n^*/dt \approx 1 - 4 \mu Sv/h$ at 12 km

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

Druck

hPa

100

de Broglie wavelength: $\lambda = h / p$

 Neutron detectors do not detect neutrons but products of neutron interactions!

- Almost all detector types can be made neutron sensitive:
 - external converter (radiator)
 - converter = detector

The Neutron Detection Process

- Detection of a neutron is a sequential process:
 - **1.** Interaction of the incident neutron: Neutron transport
 - 2. Transport of secondary particles to or within sensing elements: Hadron, ion, photon transport
 - **3.** Primary ionization by secondary particles
 - 4. Conversion to optical photons, gas amplification: Transport of electrons and optical photons
 - 5. Conversion to electrical signal S
- These steps are described by transfer functions $T_i(s_{i-1}, s_i)$
- Convolution of the T's: Response function R(S,E)

$$N_{\rm S}(S) = \int R(S,E) \Phi_E(E) dE$$

... How to solve this integral equation?

Basic requirements for neutron detection:

- Slow neutrons: high Q-values, no resonances!
- Fast and high-energy neutrons: large smooth cross sections!

Basic types of neutron detectors:

- Neutron counters
 - Signal does not depend on neutron energy
 - Typical for detection of thermal neutrons
- Neutron spectrometers
 - Signal <u>somehow</u> related to neutron energy
 - Inversion procedures are used to infer the neutron energy distribution

Neutrons can only be detected after conversion to charged particles or photons:

- Elastic scattering: ^AX(n,n)^AX → recoil nucl. ^AX^{z+}
- Inelastic scattering: ${}^{A}X(n,n'\gamma){}^{A}X \rightarrow recoil nucl. {}^{A}X^{z+}, e^{-}$
- Radiative capture: $^{A}X(n,\gamma)^{A+1}Y \rightarrow e^{-1}$
- Neutron emission: ${}^{A}X(n,2n){}^{A-1}Y \rightarrow radioact. daughter$
- Charged-particle emission (lcp = p, d, t ,h, α):
 ^AX(n,lcp)^AY→ lcp, recoil nucl. ^AY^{z+}
- Fission: $n+^{A}X \rightarrow ^{A1}X_{1}+^{A2}X_{2} + vn \rightarrow fission fragments$

Cross Sections Relevant for Neutron Detection

- List of reactions relevant for neutron detection: Cross section standards + dosimetry standards!
- some additional reactions: ${}^{187}Au(n_{th},\gamma)$, ${}^{155,157}Gd(n_{th},\gamma)$, ${}^{209}Bi(n,f)$,

Kinematics of Nuclear Reactions: A(a,b)B

Kinematical properties of two-particle reactions relevant for neutron detectors:

- Strict correlation between ejectiles this is important for tagging neutrons
- Energy E_B of recoil nucleus
- Center-of-mass ↔ laboratory system

 $\cos \phi_{\rm B}^{\rm lab} = \cos(\phi_{\rm B}^{\rm cm} / 2)$

⇒Energy distribution of recoils

$$\frac{\mathrm{d}N}{\mathrm{d}E_{\mathrm{B}}} \propto \frac{1}{E_{\mathrm{a}}} \frac{(A+a)^{2}}{4A} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega^{\mathrm{cm}}}\right) (E_{\mathrm{a}})$$

this is 'employed' in recoil detectors

Thermal and Slow Neutrons

Two-Particle Reactions with high Q-Value

• Cross section: $\sigma(E) = \sigma_0 \cdot (v_0/v)$, $v_0 = 2200$ m/s σ_0 : Westcott cross section

Reaction rate indep. of neutron spectrum n_E:

$$\mathbf{R} = \int \frac{\sigma_0 \mathbf{v}_0}{\mathbf{v}} \cdot \mathbf{n}_E \mathbf{v} \, \mathrm{d}\mathbf{E} = \sigma_0 \mathbf{v}_0 \mathbf{n}$$

BF₃ and ³He Proportional Counters

- Cylindrical and spherical shapes Large variety of sizes: *I* < 1 m and pressures: *p* < 1 bar (BF₃), 10 bar (³He)
- Counters must be calibrated:
 - ³He and BF_3 pressure ?
 - ¹⁰B enrichment ?
 - Electrical field ?
 - Wall effects ?

- n/γ discrimination using a pulse-height threshold
- BF₃: aging at high dose rates air transport prohibited: HF formation!
- ³He: more efficient than BF₃because of larger <u>σ·ρ</u> low Q-value makes n/γ sep. difficult
- ³He is scarce nowadays \Rightarrow replacements urgently needed!

Spherical ³He Counters

Centronics SP9 Counter: - almost isotropic response

- ³He pressure range: 0.2 bar 2 bar
- working horse for thermal neutron measurements

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

³He and BF₃ Pulse-Height Spectra

- Wall effect: incomplete energy deposition by one ejectile: $E_1 < E_{dep} < E_1 + E_2$
- Significant dead times: t_{DT} = 1-10 μs
- Photon background suppressed by pulse-height threshold

Fast Neutrons: Moderating Detectors

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Flat Response Detectors: General Principles

Ref.: G. Knoll, Radiation detection and measurement, 3rd ed., p. 539

Scattering Cross Section for Hydrocarbons

ENDF Request 44258, 2014-Jul-08,19:47:54

NB: np scattering dominates for *E*_n < 20 MeV

The Long Counter

- Design from the 1950-60s: Hanson, De Pangher, McTaggart
- Design principles
 - Thermal shield for directional response
 - Grooves for deeper penetration of low-energy neutrons
 - High sensitivty
- Large device: I = 44 cm, ^Ø38 cm
- Flat response:
 *E*_n = 0.01 10 MeV δ*R*_Φ/*R*_Φ ≈ ±10%
- Effective centre $x_0(E)$: $N \propto \frac{1}{(x + x_0)^2}$
- Sensitive to room-return but very stable ⇒ ideal monitor

Monte Carlo Modelling of Long Counters

Flat-field irradiation form the right hand side

Only neutron 'tracks' contributing to the response of the thermal detector are shown!

Ref.: N. Roberts et al., NPL Report DQL RN004

- Annular moderator and borated shield protect the inner moderator from neutrons entering from the sides
- Higher energy neutrons penetrate deeper into the moderator

Long Counter: Response and Effective Center

- Calibration with radionuclide sources: link to activity standard!
- Overall uncertainty (NPL): $u_R/R_{\Phi} = 0.014$, $u_{x0} = 0.63$ cm
- Useful energy range: 1 keV 15 MeV (de Pangher LC) • (w/o carbon resonances)
- Designs with ext. energy range and/or higher sensitivity ٠ available alisch-lechnische Bundesanstalt
 Braunschweig und Berlin

TOF Long Counters: Black Detector

- Moderation time in a long counter: several 10 µs
- ⇒ not suited for time-of-flight (TOF)
- Black detector:
 - Moderator: liquid scintillator
 - Efficiency ≈ 0.95 ± 0.05 for E_n = 0.5 – 10 MeV
 - Time response determined by $L_p(E)$
 - TOF resolution ≈ 4 ns (tail!)

Long Counters for Beta-Delayed Fission Neutrons

- ß-del. fission neutrons: t_{1/2} ≈ 0.1 100 s
- PE moderator with ³He counters
 - Fissionable sample in central channel
 - Neutron detection eff. $\varepsilon > 10\%$
 - Irradiation sequence:
 beam on beam off and counting
 - Precursors kept in equilibrium

Ref.: X. Ledoux et al., ERINDA workshop 2010

Long Counters for Beta-Delayed Neutrons

- ß-del. neutrons in r-process nucleosynthesis:
 - path back to stability: $A \rightarrow A-1$
 - add. neutron source: P_n
- BELEN-30 detector:
 - 1 m³ PE moderator
 - 30 ³He counters in two 'crowns'
 - Precursors implanted in Si-strip detectors
 - Recording of β- and n-events
 - Exp. verification of the MCNPX model:
 ²⁵²Cf(s.f), ¹³C(p,n), ¹³C(α,n), ⁵¹V(p,n) at PIAF

Ref. :M.B. Gómez-Hornillos *et al.*, JPConf 312 (2012) 052008

Fast Neutrons: Recoil Detectors

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Recoil detectors are the working horses of neutron metrology

- Based on elastic scattering: Q = 0 MeV
- Most important reaction: ¹H(n,n)¹H
- Differential response determined by (dσ/dΩ^{cm})
- Interference from other constituents and detector properties
- Two approaches for detection of elastic recoils
 - Detector = target: full angular distribution
 - Separate radiator: only backward angles

- $\sigma_{\rm tot} \approx \sigma_{\rm np}$ Relative measurements at LANSCE: 5 - 500 MeV • Abfalterer et al. (2001), uncertainty < 1% Differential np cross section: $(d\sigma/d\Omega)$ • relative angular distributions, normalization to σ_{tot} Gammel formula (1960) - Analytical fit to exp. data: – Phase-shift analysis: Hopkins-Breit (1970) \rightarrow ENDF/B-V Dodder-Hale (1991) – *R*-matrix analysis: \rightarrow ENDF/B-VI Dodder-Hale (2006) \rightarrow ENDF/B-VII
- Important for metrology: ۲ **Backward scattering**

Total np cross section:

(d*σ*/dΩ)_{CM}(180°)

Differential Neutron-Proton Scattering Cross Section

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

The Energy Range above 20 MeV

recommend phase shift analysis: VL40

- not many new np data: TSL, IUCF, PSI
- no uncertainties given: 'about 5%'

Recoil Detectors: Proportional Counters

- Strong quenching for low-energy recoil in organic scintillators:
 L/E = 0.08 for 100 keV p in BC501A
- Ranges of recoil particles in solids become very small:
 R = 1.4 μm for 100 keV p in PE
- ⇒ Gaseous detectors for detection of low-energy recoils
- Complications:
 - design more complicated (el. field, surface treatment, cleanliness)
 - need for high-vacuum and gas filling systems
 - wall effects important
 - large non-constant rise-time ⇒ not well-suited for TOF
 - Interference from photons and C recoils
- Pioneering work of E.F. Bennet *et al*. from the **1950's 1070's**

The PTB Proportional Counter P2

- total volume: ≈ 1.6 dm³
- active volume: ^Ø55.5 mm, *I* = 193.3 mm
- el. field: defined by ^Ø4 mm field tubes at ground potential
- anode: ^Ø 100 μm gold-plated tungsten wire (selected)
- counting gas: H_2/CH_4 (3.5 vol.%), C_3H_8
- energy range: 20 keV 2 MeV

Modelling of the RPPC Response to Neutrons

MC modeling required to describe finite-size and gas-related effects

1.9 mm

shape of the sensitive volume

Stagnation point

- energy-dependent W-value
- carbon recoils included

Surface: Electric potential (V) Streamline: Electric reld Contour: Electric potential (V)

112 110 108

106

104

102

100

98

96

94 92 90

88

86

82

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

10 12 14 16 18 20 22

Photon/Neutron Discrimination

Recoil tracks more localized than electron tracks ⇒ different drift times for sec. electrons

CONTENT

Rise-time measurement:

fast filter amp. : t_{diff} = 50 ns, t_{int} = 500 ns

- start: LE-disc. close to noise
- stop: CF-disc. (*f* = 0.4)

shaping amp.: $t_s = 2 \mu s$

NB: Analogue technique to be replaced by waveform digitizers!

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Recoil Detectors: Scintillation Detectors

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

The Physics of Organic Scintillators

Unitary scintillators:

- Benzene ring: delocalized π orbitals
- Singlett (¹X, ¹X^{*}, ¹X^{**}) and triplet (³X^{*}, ³X^{**}) states

Principal physical processes:

- Excitation by electron impact
- Non-rad. efficient internal degradation ^{1,3}X** → ^{1,3}X*+ phonon drain via competing channels: quenching states
- Rad. decay ¹X* → ¹X: prompt fluorescence: τ = 1 – 80 ns, λ_{fluor} > λ_{ab}
- Rad. transition ${}^{3}X^{**} \rightarrow {}^{1}X^{*}$ forbidden
- Coll. deexc. ${}^{3}X^{*} + {}^{3}X^{*} \rightarrow {}^{1}X^{*} + {}^{1}X + phonon:$ delayed non-exp. fluorescence: $\tau > 300$ ns

Ionization Quenching and Pulse-Shape Discrimination

۲

۲

Liquid and Plastic Scintillators

- Typical unitary scintillators:
 - Stilbene (1,2-Diphenylethene C₁₄H₁₂)
 - Anthracene ($C_{14}H_{10}$): 'gold' standard for scint. efficiency

Binary or ternary scintillators ٠

- Solvent X: Benzene (C_6H_6), *n*-Methylbenzene $(C_6H_{6,p}(CH_3)_p)$, Styrene $[C_6H_5 \cdot C_2H_3]_n$,
- Solutes Y_i: PPO, POPOP, bis-MSB,
- Lower excitation energy: $E_{Y^*} < E_{X^*}$
- Prim. processes as in unitary • scintillators \rightarrow ¹X^{*}, ³X^{*}
- Energy transfer to solutes ${}^{1}X^{*} + {}^{1}Y \rightarrow {}^{1}X + {}^{1}Y^{*}$ (rad., non-rad.) ${}^{3}X^{*} + {}^{1}Y \rightarrow {}^{1}X + {}^{3}Y^{*}$ (non-rad.) \rightarrow rise, decay times
- Secondary solute: wavelength shifter ٠

Light Output of Organic Scintillators

- Also higher-order formulas are approximations!
- NB: Experimental data include instrumental effects!

Properties of Organic Scintillators

		plastic scint.	liquid scint.
1.	Hydrogen / carbon ratio	≈ 1.1	≈ 0, 1.2 – 2.0
2.	Scintillation efficiency	55 – 65 %	40 – 80 % anthracene
3.	Scintillation spectrum λ_{max}	370 – 490 nm	≈ 425 nm
4.	Transparency	1 - 4 m	
5.	Decay times	1.4 – 3 ns, 230 ns	2 – 4 ns
6.	Pulse-shape discrimination	(yes)	yes
7.	Doping for thermal sensitivity	yes	yes

Components of a Liquid Scintillation Detector

- Scintillator cell + expansion volume
- Light guide (reflective coating)
- PMT with µ-metal shield
- High voltage supply
 - resistor chain + decoupling capacitors
 - transistorized low-power dynode supplies

Response of Organic Scintillation Detectors

 Elastic n-p scattering cross section dominates: dN/dL = const for L < E_n

Modification of the rectangular shape:

- Non-linear light output: $dL/dE \propto E^{3/2}$ $\Rightarrow dN/dL = (dN/dE) \cdot (dL/dE)^{-1} \propto L^{-1/3}$
- n-¹²C scattering: $\Delta E_n < 0.28 \cdot E_n$
- Multiple n-p scattering: $\Sigma L(E_{p,i}) < E_{q}$
- Finite pulse-height resolution.
- ¹²C(n,x) reaction:
 Q value for ¹²C(n,n',γ): 4.4 MeV

⇒ Simulated using Monte Carlo techniques!

 E_n < 15 MeV: only scattering and alpha emission!

Break-Up Reactions

1723

16.57

14.08

13.35

12.71

11.83

10.3

9.641

7.6542

4.4389

$E_n < 20 \text{ MeV}: {}^{12}C(n,n'3\alpha)$

- Four-body break-up with ٠ several channels
- Investigated using nuclear • emulsions and liquid scintillation detectors
- Still insufficient data for MC ٠ codes
 - NRESP7
 - Geant4 (data base from CIEMAT)

reaction

0-value

- Simulation using NRESP7, similar results with SCINFUL
- Generally good agreement for $E_n < 16$ MeV, but description of α emission channels still problematic!
- Partial spectra can be sorted by first interactions
- Pulse-height spectra used to determine ¹²C(n,α)⁹Be cross section! Ref.: H.J. Brede *et al.*, NSE 107 (1991) 22

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Response for $E_n > 20 \text{ MeV}$

Response dominated by n-¹²C interaction:

- Strong contributions from break-up reactions:
 ⇒ correlation of charged particles from individual interactions!
- Data libraries (ENDF, JEFF) have only emission tables:
 ⇒ general-purpose MC codes are not adequate: MCNPX, Geant4

Pulse-Shape Discrimination (PSD)

- PSD properties depend on:
 - Neutron energy
 - Detector size
 - Multiple scattering
 - Scintillator composition (oxygen, impurities)
- Discrimination of neutron and photon-induced events
 - Ambient photons: background reduction!
 - Delayed gammas
 - Suppression of response induced by ¹²C(n,n'γ)
- PSD yields Z/A information: particle identification
- Techniques:
 - Analogue $RC(CR)^2$ shaping \rightarrow zero crossing
 - Analogue or digital integration: Q_{short} vs. Q_{long}
 - Fit of the waveform
- PSD has limited dynamic range: difficult for L < 500 keV

PSD Examples

- Many older MC codes do not include the ¹²C(n,n'γ) channel.
- Photon-induced events must be excluded
- Problem: Separation of photo-induced and proton escape events

Pulse-Height Resolution

Pulse-height resolution depends on

- Light collection: A
- Photoelectron statistics: B
- Electronic noise: C

Elongated cells for high-energy neutrons:

 $= \sqrt{A^2 + B^2/L} + (C/L)^2$

- Long tracks
- A depends on neutron energy E_n
- Optimisation important for spectrometry
 - Small cells (diameter ≈ depth)
 - Partially coated light guides
- Unfolding: $\Delta E_n / E_n \approx 0.2 \cdot \Delta L / L$

Fig. 2

Optimization of the Pulse-Height Resolution

Experimental Characterization of Detectors

- Experimental data to be measured for each detector:
 - Pulse-height resolution
 - Light output function
 - Response matrix (normalized to n-p scattering)
- Suitable neutron beams:
 - Monoenergetic: time consuming!
 - 'White' (Be+p, C+p, D+d):
 *E*_n selection via TOF
 - TCAP: 'absolute' measurements
- Normalization in the n-p part: response matrix: (dR₀/dL)(E_n)
- This works up to 60-70 MeV

Results

Investigation of a set of NE213/BC501A detectors

- LO: up to 10% deviation from ref. data
- R_{Φ} : up to 4% rescaling of calculated response functions

Re-normalization factors for NRESP7 response functions for monoenergetic neutrons

Detector	Diff. to unity (%)
D_NE1	$+0.3\pm1.3$
D_NE2	$+0.0\pm0.9$
D_BI1	$+1.2\pm0.6$
D_BI2	$+4.7\pm1.6$
D_BI3	$+1.3\pm0.8$

Ref.: D. Schmidt et al., NIMA476 (2002) 186-189

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Recent Developments: PSD with Plastic Scintillators

- Liquid and plastic scintillators: binary or ternary systems
- Properties determined by primary solute system: PSD: ³Y* + ³Y* → ¹Y* + ¹Y
 - Liquid scintillator: strong molecular diffusion of ³Y*
 - Plastic scintillator: long-range dipole dipole interactions required this process is only effective at higher Y concentrations

Commercial Plastic Scintillator with PSD: EJ299-33

- PSD properties as good as for liquid or crystal scintillator
- Secondary solute improves QE
- Practical advantages: non-toxic, non-flammable, no container, all shapes, sizes ≤ 15 cm

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Boron-Loaded Liquid Scintillators

- Main disadvantage of organic scintillators: strong quenching
- ⇒ Boron doping increases sensitivity to low energy neutrons: ${}^{10}B(n,\alpha_0)^7Li + {}^{10}B(n,\alpha_1)^7Li^*$
 - Up to 4.5 % (wt.) B loaded as B(OCH₃)₃
 - Commercially available, e.g.: EJ309B, BC523A
 - Dopant influences light output and PSD!

Ref.: J. Iwanowska et al., JINST 7 (2012) C4004 (FNDA2011)

- Same technique applicable for ⁶Li and ¹⁵⁷Gd
- ¹⁰B-loaded plastic scintillators available as well: BC454

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

'Unconventional' Liquid Scintillators: LAB for SNO+

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Inorganic Scintillators: ⁶LiGlass

Ce³⁺ activated lithium silicate glass

- SiO₂: 55-75%, MgO: 4-25%, Al₂O₃: 9-20%, Ce₂O₃: 4-5%, Li₂O: 6-21%
- Depleted (≤ 0.01%) and enriched (≤ 99.9%) in ⁶Li
 Low-background material: NE912 / NE913
- Low light yield: 5% of Nal for p, He 15-25% of Nal for electrons
- Poor PSD properties
- Limited n/γ discrimination by PH threshold
- Non-linear light output: $L_{\alpha}(v) \neq L_{p}(v)$
- Main application: TOF spectrometry

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Novel Inorganic Materials: CLYC

10-3

Sect

Cross :

CLYC: Cs₂LiYCl₆:Ce

- High light yield: 40 60 % Nal for p, He 60 – 90 % Nal for electrons
- Good PH resolution $\Rightarrow \gamma$ and n detector
- Neutron detection: ⁶Li(n,α), ³⁵Cl(n,p)
- **Excellent PSD properties** •
- Excellent time resolution: $\Delta t < 800 \text{ ps}$
- **Cracky crystals**
- Small sizes: $\emptyset < 2^{"}$
- **Expensive material**

Nationales Metrologieinstitut

Request 48343, 2014-Sep-12,22:21:12

10-1

FNDF

ENDF/B-UII.1: LI-6(N,T)HE-4 ENDF/B-VII.1: CL-35(N.P)S-35

10-2

10-2

10-4