Neutron scattering and (n, charged particle) measurements

Arnd Junghans Helmholtz-Zentrum Dresden-Rossendorf Germany

Table of Content

- from yesterday's lecture: Neutrons for Science facility at SPIRAL-2
- Relevance of inelastic scattering and neutron-induced chargeparticle reactions
- nELBE experiments on inelastic scattering ⁵⁶Fe
- GAINS experiments on inelastic scattering ⁵⁶Fe
- Neutron-induced charged particle reactions ²⁶AI

The Neutrons For Science facility at SPIRAL-2

X. Ledoux and the NFS collaboration

Description

Neutron Yield at 0° (n/sr/µC/MeV)

0

5

Continuous spectrum : Quasi-monokinetic beam : $E_{max} = 40 \text{ MeV}$, $\langle E \rangle = 14 \text{ MeV}$ $E_n = up \text{ to } 31 \text{ MeV}$ thick converter (1cm) Thin converter (1-3 mm) 2,0E+10 3,E+09 33 MeV d + Be Neutron Yield at 0° (n/sr/µC/MeV) — 30 MeV p + 7Li - 33 MeV d + C 1,5E+10 - 40 MeV d + Be 2,E+09 1,0E+10 1,E+09 5,0E+09 0,E+00 0.0E+00 0 5 10 15 20 25

40

15

20

Energy (MeV)

25

30

35

Energy (MeV)

30

35

M. J. Saltmarsh et al., NIMA145 (1977) p81-90

10

⇒ Similar to IFMIF spectrum

Single bunch selector for time-of-flight measurements: Repetition rate: 150 kHz – 1 MHz

Neutron flux in the TOF area

NFS: 40 MeV d + Be WNR: Los Alamos n-TOF 2: CERN

n-TOF 1 : CERN

GELINA : Geel

Energy (MeV)

• E_n : from 0,1 MeV to 40 MeV

- Good energy resolution
- Reduced γ flash
- Low instantaneous flux

Complementary to the existing facilities

Neutron-induced reactions on ⁵⁶Fe

ENDF Request 49394, 2014-Sep-26,08:32:30

Data needs for fast reactors and ADS

NEA Working Party on International Nuclear Data Evaluation Co-operation (WPEC) subgroup 26 Sensitivity study of integral reactor parameters ($k \downarrow eff$,...) with ERANOS fast reactor code

		(F		
		Energy Range	Current Accuracy (%)	Target Accuracy (%)
U238	σ_{inel}	6.07 ÷ 0.498 MeV	$10 \div 20$	$2 \div 3$
	σ_{capt}	24.8 ÷ 2.04 keV	3 ÷ 9	1.5 ÷ 2
Pu241	Гбел	1.35MeV ÷ 454 eV	8 ÷ 20	2÷3 (SFR,GFR, LFR)
	Uliss			5÷8 (ABTR, EFR)
Pu239	σ_{capt}	498 ÷ 2.04 keV	7 ÷ 15	4 ÷ 7
Pu240	σ_{fiss}	1.35 ÷ 0.498 MeV	6	1.5 ÷ 2
	ν	1.35 ÷ 0.498 MeV	4	$1 \div 3$
Pu242	$\sigma_{\rm fiss}$	2.23 ÷ 0.498 MeV	19 ÷ 21	3 ÷ 5
Pu238	$\sigma_{\rm fiss}$	1.35 ÷ 0.183 MeV	17	3 ÷ 5
Am242m	σ_{fiss}	1.35MeV ÷ 67.4keV	17	3 ÷ 4
Am241	$\sigma_{\rm fiss}$	6.07 ÷ 2.23 MeV	12	3
Cm244	$\sigma_{\rm fiss}$	1.35 ÷ 0.498 MeV	50	5
Cm245	$\sigma_{ m fiss}$	183 ÷ 67.4 keV	47	7
Fe56	σ_{inel}	2.23 ÷ 0.498 MeV	16 ÷ 25	3 ÷ 6
Na23	$\sigma_{\rm inel}$	1.35 ÷ 0.498 MeV	28	$4 \div 10$
Pb206	$\sigma_{\rm inel}$	2.23 ÷ 1.35 MeV	14	3
Pb207	$\sigma_{\rm inel}$	1.35 ÷ 0.498 MeV	11	3
Si28	$\sigma_{\rm inel}$	6.07 ÷ 1.35 MeV	14 ÷ 50	3 ÷ 6
	σ_{capt}	19.6 ÷ 6.07 MeV	53	6

Table 32. Summary of Highest Priority Target Accuracies for FastReactors

Table 20. Fast reactor and ADMAB target accuracies (1σ)

Multiplication factor (BOL)	300 pcm
Power peak (BOL)	2%
Burn-up reactivity swing	300 pcm
Reactivity coefficients (coolant void and Doppler – BOL)	7%
Major nuclide density at end of irradiation cycle	2%
Other nuclide density at end of irradiation cycle	10%

➔ fast neutron spectrum

- ➔ U,Pu + minor actinides structural & coolant materials
 - neutron induced fission
 - neutron capture
 - neutron inelastic scattering
 - U,Pb,Fe,Na

MCNP 6 benchmark calculations with integral experiments

Comparison of Calculation and Experiment of criticality in many integral experiments

FIG. 10: Results for the LEU benchmarks with a thermal spectrum (continued).

plutonium, fast /mixed spectra

FIG. 13: Results for the PU benchmarks with a fast, intermediate, or mixed spectrum.

Analysis of criticality experiments shows requirements for improved nuclear data JEFF-3.1.1 Joint Evaluated Fission Fusion File (OECD-NEA) JENDL-4.0 Japanese Evaluated Nuclear Data Library ENDF/B-VII.1 Evaluated Nuclear Data File (U.S.A.)

Neutron-induced charged particle reactions relevant to nuclear astrophysics and nuclear applications

- ¹⁴N(n,p)¹⁴C neutron poison in the transition from CNO to s-process (also the source of 14C production in the atmossphere, carbon dating...)
- ¹⁷O(n,α)¹⁴C neutron poison for the s-process, bottleneck in inhomogeneous BBN, neutrino-driven wind r-process (at thermal energy both reactions produce ¹⁴C from nuclear reactors)
- ²⁶Al(n,p)²³Na destruction of ²⁶Al (cosmic gamma-ray emitter)
- ${}^{25}Mg(n,\alpha){}^{22}Ne$ neutron poison in the s-process
- ${}^{33}S(n,\alpha){}^{30}Si$ nucleosynthesis of sulfur in explosive carbon burning
- $W(n,xn\gamma)$ fusion reactor material, low activation steels
- ${}^{59}Ni(n,\alpha)$ CVD Diamond detector development
- ²³⁹Pu(n,2n) Carmen Gd Lq. Scint. Ball
- ¹⁶O(n, α) EAMEA, LPC Caen
- References: work by the nTOF collaboration and at IRMM, Gelina Grapheme setup (IPHC Strasbourg), CEA, NFS Ganil

Neutron-induced charged particle reactions relevant to nuclear astrophysics

Main neutron source for the s-process: ${}^{22}Ne(\alpha,n){}^{25}Mg \rightarrow {}^{25}Mg(n,\alpha)$ is a neutron poison for the s-process

Q-values of neutron-induced charged particle reactions

Depending on the Q-value the reactions have a threshold or not. Q-value influenced by neutron excess and even-odd effect in neutron binding

Measurements of photon production cross section ⁵⁶Fe(n,n'y)

Target: cylinder of natural iron diameter 20 mm, thickness 8 mm

 $^{\circ}$ HPGe detector at 125 $^{\circ}\,$ to the neutron beam and a distance of 20 cm from the target

time-of-flight of the incident neutrons time resolution 10 ns

Measurements of photon production cross section

with target

without target

⁵⁶Fe decay scheme

Feeding correction from measured transitions

Gamma-ray production cross section of higher lying states feeding the $2\sqrt{1}$ + state of the $4\sqrt{1}$ + state (2085 keV) determined (847 keV)

Gamma-ray production cross section By the 1238 keV gamma ray and Feeding transitions from higher lying states

Method relies on a complete level scheme and gamma ray branching ratios

Corrections to the inelastic cross section

- Feeding from higher lying states (with observed gamma intensities)
- Probability of double scattering in the Fe sample 2% -10%
- Attenuation of the gamma rays in the Fe sample, e.g. 847 keV Factor 1.28
- Correction for angular distribution of emitted gamma-ray (4th order legendre polynomial) not applied

$$\frac{d\sigma}{d\omega}(E_n) = \frac{\sigma(E_n)}{4\pi} [1 + w_2(E_n)P_2(\cos\theta) + w_4(E_n)P_4(\cos\theta)]$$

Inelastic neutron scattering cross section on ⁵⁶Fe

R. Beyer et al., Nuclear Physics A 927 (2014)

Inelastic scattering to the 1st excited state

Inelastic scattering to the $2_1^+, 4_1^+, 6_1^+$ states

R. Beyer et al., Nuclear Physics A 927 (2014)

nELBE – double ToF detector setup

- BaF₂ scintillator made of two 20 cm long hexagonal crystals (inner Ø = 53 mm)
 active high voltage dividers → reduced heat production
- double sided readout \rightarrow reduce trigger rate due to dark current

sample: ^{nat}**Fe** (99.8%) → 91.754% ⁵⁶Fe mass: 19.82 g → 18.15 g ⁵⁶Fe

nELBE – double ToF detector setup

- EJ-200 plastic scintillator 1 m x 11 mm x 42 mm
- double sided readout \rightarrow reduce trigger due to dark current
- active high voltage dividers \rightarrow reduced heat production
- high gain photomultiplier + threshold just below single electron peak
 > neutron detection threshold energy 20 keV/
- → neutron detection threshold approx. 20 keV
 surrounded by 1 cm Pb shielding to reduce background rate

sample: ^{nat}**Fe** (99.8%) \rightarrow 91.754% ⁵⁶Fe mass: 19.82 g \rightarrow 18.15 g ⁵⁶Fe

nELBE – double ToF detector setup

sample: ^{nat}**Fe** (99.8%) → 91.754% ⁵⁶Fe mass: 19.82 g → 18.15 g ⁵⁶Fe 5 plastic scintillators for **neutron detection** (1 m, 11 x 42 mm²)

Detector geometry - details

Plastics

- \rightarrow borated polyethylene block between BaF₂ and plastics
- ➔ number of random coincidences reduced by one order of magnitude

angular coverage: - $\theta_n = 60^\circ - 120^\circ$ - $\theta_\gamma = 50^\circ - 130^\circ$ - $\varphi = +/- (30^\circ - 130^\circ)$

Experimental method

Experimental method

Experimental method

Kinematic calculations

The 56 Fe(n,n' γ) cross section for the 1st excited state

The ⁵⁶Fe(n,n' γ) cross section for the 1st excited state

The ⁵⁶Fe(n,n' γ) cross section for the 1st excited state

JEFF, ENDF resolution averaged to experimental resolution nELBE double time of flight data systematically lower Possible angular correlation between n' and γ not observable due to Low counting statistics in the individual detector pairs.

Seite 3

Angular correlation of γ and n'

Statistical Model of nuclear reactions \rightarrow Angular correlation of the emitted γ and the scattered neutron:

Angular correlation measurement ⁵⁶Fe(n,n'γ)

Counting statistics is insufficient to observe the angular correlation

DRESDEN

Angular distribution setup

Time of flight vs. energy (uncalibrated)

Study $(n,n'\gamma)$ angular distribution and cross sections with HPGe and LaBr₃

Inelastic scattering

Neutron time-of-flight with digital processing

GAINS Experiment at GELINA

8 HPGe detectors under angles 110° and 150° to the beam, ²³⁵U FC for neutron fluence determination Sample e.g. ^{nat}Fe thickness 3 mm, diameter 80 mm

Integral production cross section of 847 keV γ rays in ^{56}Fe

Mitglied der Helmholtz-Gemeinschaft

DRESDE

A. Negret et al. Phys. Rev. C 90 (2014) 034602

Level cross sections for ${}^{56}Fe(n,n'\gamma)$

A. Negret et al. Phys. Rev. C 90 (2014) 034602

Mitglied der Helmholtz-Gemeinschaft

Comparison with evaluated data

At the first few hundred keV the resonant structure might correspond to single resonances Of the compound nucleus 57 Fe* At higher energies the density of resonances is much smaller than expected from the level density models \rightarrow Ericson fluctuations

A. Negret et al. Phys. Rev. C 90 (2014) 034602

DRESDE

Neutron inelastic scattering $^{22}Na(n,n',\gamma)$ measured at GAINS

C. Rouki et al. / Nuclear Instruments and Methods in Physics Research A 672 (2012) 82-93

Fig. 10. The measured total inelastic cross-section for ²³Na (a) compared with earlier measurements and (b) with evaluated data from Archier [42] and the ENDF B-VII [41] and JEFF 3.1 [40] libraries.

C. Rouki et al., NIM A672 (2012) 82

92

²⁶Al(n,p) ²⁶Al(n, α) time of flight measurement at GELINA

FIG. 2. Level scheme for the 26 Al $(n, \alpha_i)^{23}$ Na and 26 Al $(n, p_i)^{26}$ Mg reactions. The energies are given in MeV.

$$\sigma_{^{26}\text{Al}}(E_n) = \frac{\epsilon_{^{10}\text{B}}}{\epsilon_{^{26}\text{Al}}} \frac{Y_{^{26}\text{Al}}(E_n) - Y_{^{26}\text{Al}}^{\text{BG}}(E_n)}{Y_{^{10}\text{B}}(E_n) - Y_{^{10}\text{B}}^{\text{BG}}(E_n)} \frac{N_{^{10}\text{B}}}{N_{^{26}\text{Al}}} \sigma_{^{10}\text{B}}(E_n),$$

L. De Smet et al. Phys. Rev. C76 045084

- ²⁶Al sample 6*5 cm² (2.58±0.12) 10717 atoms (very little target material !!!)
- Time of flight measurement at GELINA flight path 8.45 m
- Frisch gridded ionisation chamber to detect n, α
- Neutron intensity from separate measurement of ¹⁰B(n, α) reference deposit in FGIC

Frisch-Grid Ionisation Chamber

FIG. 1. (Color online) Frisch gridded ionization chamber used in this work. The sample is mounted in the middle of the cathode, which is the lowest plate in the picture. The top plate is the anode; the plate in the middle is the Frisch grid.

 2π detection geometry for alphas

Counting gas: ultrapure methane

L. De Smet et al. Phys. Rev. C76 045084

²⁶Al(n, α) resonances

FIG. 5. ²⁶Al $(n, \alpha_0 + \alpha_1)^{23}$ Na cross section determined in this work (black line) compared with the ²⁶Al $(n, \alpha_0)^{23}$ Na cross section obtained by Koehler *et al.* [11] (gray line).

From the resonant cross section maxwellian averaged cross sections for Nuclear astrophysics can be deduced. \rightarrow Lecture by R. Reifarth

L. De Smet et al. Phys. Rev. C76 045084

Activation measurements of radioactive targets: Irradiation with neutrons in the energy range of 7.5 to 12.5 MeV

 Background correction via gas in/out experiments courtesy: Syed M. Quaim, Bad Honneff Seminar 2013

Gas Production in Structural Materials 🕖 JÜLICH

Example: ${}^{58}Ni(n,\alpha){}^{55}Fe$ (T_{1/2} = 2.7 a; 5.9 keV X-ray) *Technique:* Long irradiation; radiochemical separation of ${}^{55}Fe$;

Qaim et al., NSE **88**, 143 (1984); Fessler and Qaim

RCA 84, 1 (1999).

Comparison of radiochemical data with mass spectrometric data and model calculations adds more confidence to results

Measurements on Radioactive Targets (cont´d)

Example : 99 Tc(n,p) 99 Mo (T_{1/2} = 66.0 h)

Technique : Tc metal (0.5 g) pressed to disc of 13 mm diameter, placed in 0.2 mm thick Al container, sealed in polyethylene bag, attached monitor foils, irradiations with 8 – 20 MeV neutrons. High-resolution γ -ray spectrometry.

Reimer et al., Nucl. Phys. A **815**, 1 (2009)

(Geel – Jülich – Petten – Debrecen collaboration)

- Database extended
- Good test of model calculations